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 Hello everyone. Welcome, to the first lecture of scalar of NPTEL course on Scalable

Data Science. Today we will introduce the course. So, today’s lecture is an introduction

and I am Professor Sourangshu Bhattacharya from Computer Science and Engineering

Department at IIT, Kharagpur.

(Refer Slide Time: 00:37)

So, in this lecture we will be. So, we will be discussing the main topics that we will

cover in this course, ok. So, broadly we can say that the main topics that will be covered

in this course are divided into these four categories.

So, the four categories are stream processing and sketching. So, we will see we will have

an introduction to what is stream processing and sketching. And we will see small toy

problem  or  rather  introductory  problem  which  is  called  the  problem  of  reservoir

sampling, this is to give you a feel of the kind of things that you will be seeing in this

course,  and  then  the  second group of  topics  is  around dimensionality  reduction  and

hashing. So, we will introduce the problems and we will describe what the problems are



and what is the area. The third theme is frameworks for big data computation again we

will describe problems and the fourth broad theme is scalable machine learning.

(Refer Slide Time: 02:12)

So, stream processing and sketching.

(Refer Slide Time: 02:15)

So, what is stream processing or rather what is data streams. So, in many data mining

situations  we do not  know the  entire  data  in  advance,  ok.  So,  example  can  be  like

Google’s queries, ok. So, as Google gets to know the queries as people type the queries

or from all over the world. So, you can think like from the point of view of Google the



queries come in a stream. So, the queries arrives at the Google servers in a stream. So,

whatever algorithm is processing these queries.

So,  for  example,  there  could  be  algorithms  which  are  trying  to  find  out  the  most

frequently searched query. Then this algorithm has to operate in a setting which is the

stream processing setting. So, stream management is an important when the input rate is

controlled externally, ok. So, another way of thinking about the same thing is that the

data is infinite and also the distribution of the data changes over time, ok.

(Refer Slide Time: 03:46)

So, the input elements in a stream typically enter at very rapid rate, ok. So, these are

sometimes  called  either  input  records  or  input  tupelos  or  just  input  data  or  input

elements. So, the system cannot store this entire stream in an accessible manner. So, the

big question is how to how do you make critical calculations about this stream using a

limited amount of memory, ok. So, that is the main question which is asked in this stream

processing model. So, this is very different from if you see the existing algorithm the

existing algorithm typically your algorithm will be given a certain data sets and then. So,

these are also sometimes called random access model.

So, random access model random ok: so in this case you get to access the data randomly

whereas,  in  streams you get  to access the data  one after  the other and typically  you

cannot go back to a previous data point that you have accessed, ok.
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So, this is the graphic situation. So, you have stream of data. So, this is stream 1. So,

there could be multiple streams. So, this is stream 1, this is stream 2, this stream 3. So,

time is going backward. So, basically so, this data item arrives or rather time is going this

way. So, this is the first data item that arrives, this is the second data item that arrives and

so on and so forth, ok.

 And, this is the processor. So, the processor will process the data in these streams now

broadly there can be two types of queries, ok. One is called the standing queries that is

you know beforehand  the  question  that  is  asked or  the  query  that  is  asked.  So,  for

example: you can think of these kind of queries as reports some kind of report. So, say

for example, you think like. So, the queries are arriving at Google and every 5 minutes or

every 10 minutes you have to report that what was the most asked query in the last 5

minutes, or what was the most accessed website in last a 5 minutes ok. So, these are

called standing queries.

So, the so, the other set of queries is something like the ad-hoc queries ok. So, ad-hoc

queries are queries which are asked on the fly, ok. So, there is there are multiple streams

coming in here and at  some point  in  time you may be  asked that.  So,  you may be

interested in knowing that you know let us say how many which is the most accessed

websites from India or something like which is the you know which is the most searched

keyword by a group of teenagers. So, people aged between let us say 13 to 19 years 13 to



20 years. So, these kinds of queries are not asked in advance they are asked one time and

then you may have to answer this kind of queries, ok.

Now, the thing that you have in at disposal is typically you will have a limited amount of

working memory. So, mething like so, these this processor the stream processor will run

on a server. So, this server will have a certain restriction for the hardware. So, let us say

it has a certain number of gigabytes of RAM and maybe much of the stream not always

the whole stream, but much of the stream can be stored in archrivals storage. So, these

are the resources that are available to you.

So, so, maybe you can go back to the stream a little bit, but definitely not often because it

is in a archival storage and this is very slow access, ok.

(Refer Slide Time: 09:17)

So, again one important class of queries that one might want to ask is to construct a

random sample from the data stream, ok. Another important query can be that people ask

some queries over sliding windows ok. So for example: the number of items of type x in

the last k elements of the stream, ok. So, this is one type of query, ok.

Now, we will see a small problem regarding a constructing samples of fixed size from a

stream ok.
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So, before that so, what are some examples of you know constructing queries that you

have to process over sliding windows. So, for example, for every product X so, suppose

you are Amazon you are working for the Amazon or any other retail company internet

retail company and then for every product x we keep a 0 1 stream of whether the product

was sold in the nth transaction or not ok. So, the query that you may want to answer is

how many times have you know have you sold the item X in the last k sales, ok.

So, so, your query is sold sorry query is sold, not sold, sold, not sold, not sold, not sold,

sold, sold and then you want to ask in last k sales let say this is the start of the stream.

So, this is the current position of the stream and this is where time goes back, ok. So, and

this number is k. So, how many times was this item sold? So, me body is browsing this

item and how many times has it been sold. So, it has been sold two times in this case, ok.

So, this  is  one practical  application of why you would want to answer query ad-hoc

queries on sliding windows ok.
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So, the important problem which we will discuss today is maintaining a fixed sample, ok.

So, what is the problem? So, suppose we need so, suppose we have a stream a large

stream infinite stream let us say, ok. So, this is an example of the stream. And then at any

point in time let  us say you have seen n elements,  and now you have to maintain a

sample of size s, ok. So, you have to. So, there is a stream coming and you have to store.

So, abcd something is coming in the stream and you have to store exactly a sample of

size s.

So, there should be s entries in this memory that you should store, and the when we say

sample the key property which should be preserved is whenever you have seen this n

element ok, the probability that let us say each of these n elements was stored has to be s

by n that is each element should be stored with equal probability. And since you have to

store s out of n elements you have to store s element out of n elements that you have

seen. So, the probability should be s by n, ok. So, this is the problem.
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So, how to solve this problem? So, we will describe an algorithm which is called the

reservoir sampling algorithm. So, the algorithm proceeds like this. So, whenever you so,

you start with the starting of the stream. So, for the first s elements you store all the s

elements, ok. So, the probability that you store s elements when you have seen exactly s

elements is exactly 1, because the probability is s by s which is 1 ok. So, it makes sense

only when n is greater than s, ok. So, this kind of algorithm makes sense only when s is

greater n is greater than s.

Now, when you have seen let us say n elements, where n is let us say greater than s ok,

then what you can do is. So, you do the following steps ok,so with probability s by n, ok.
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So, sorry you have already seen n minus 1 element and you are now seeing the n-th

element, ok. So, you are now seeing the n-th element and. So, with probability s by n you

keep the current element else you discard it, ok. So, you toss a coin and let us say biased

coin uniformly biased coin between 0 and 1 and if this is greater than s by n you discard

the you discard the element, if it is less than s by n you keep the element.

Now, if you have decided to keep the element that is your coin has landed in this portion

of the of 0 1, or you have generated a random number which lies in this portion of the

number line then you already have a set of n element a set of s elements that you had

stored in this memory, you pick any one of this s elements at random, and you replace

that with the current element let us call this x the current element. So, you pick any one

of these whatever was there you replace that with x. So, that is the algorithm and the

claim is that this algorithm satisfies this property that at any stage n, you will you will

stored the elements each element with probability exactly s by n, ok.

So, how will you prove this? Ok.
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So, we prove this by induction. So, what do we need to do we need to assume that after n

elements the sample contains each element seen so far with probability s by n we need to

show that after seeing n plus 1 element the sample maintains these properties that is now

the sample contents each element seen so far with probability s by n plus 1.

Now, the base case is when as we have already discussed when n is equal to s, ok. So, if

n is equal to s we know that we have stored each element with probability 1. So, the base

case hold ok. So, because we need to store each element with probability s by n, but s is

equal  to n or rather  n is  equal  to s.  So,  you have with probability  1 you store each

element.
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 Now, we also know that  the inductive hypothesis is  that if  we have already seen n

elements then we know that the sample contains each element with probability s by n.

Now, the n plus oneth element arrives, ok. So, what happens what happens to elements

which are already in s, ok. So, first let us see the element. So, with probability; so, you

know that. So, with probability 1 minus oh sorry with probability 1 minus s by n plus 1

the current element is discarded ok, that is because the algorithm says that when it is

seeing  n  plus  oneth  element  with probability  s  by n  plus  1  it  will  keep the  current

element. So, with probability 1 minus that it will discard the current element, ok.

So,  this  is  one  possibility,  ok.  The  other  possibility  is  that.  So,  in  this  case  with

probability  1,  all  the existing elements  are kept,  ok.  So, in the first  case the current

element is discarded and with probability 1 all the existing elements are kept. The second

possibility is that the current element is not discarded, and the chance of that is s by n

plus 1. So, this is the chance that the current element is not discarded. In that case with

probability s minus 1 by s and element existing element is kept because you have a total

of s samples now and you will  take one of them and discard and put in the current

element, ok.

So, the probability: so only s minus 1 of them we will actually survive ok, if this case

that is the current element is kept then only s minus 1 of them will survive. So, if you do

this calculation you will see that this probability comes out to be n by n plus 1 that is the



probability that the algorithm keeps one of the existing elements turns out to be n by n

plus 1. So now, let us see at time n plus 1 again what happens, ok. So, we know that an

element was kept in the till time n. So, this is time n and this is time n plus 1. So, an

element was kept till time n with probability s by n ok.

Now, from here to here the probability that an element will be kept is n by n plus 1, ok.

So, the chance that after n plus 1 and element will be kept is s by n times n by n plus 1

which is s by n plus 1, ok. So, the probability that an existing element will be kept is s by

n plus 1 and the probability that the new element is selected is also s by n plus 1. So, all

elements in this sample or all elements that you have seen till  now are selected with

probability s by n plus 1, ok. So, this concludes the proof.
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So, what are the other problems on data streams that we will be covering the types. So,

we will be trying to answer many different types of questions on data streams, ok. So, the

first  type  of  question  is  filtering  question.  So,  filtering  so,  you  may  want  to  select

elements from a data stream with a certain property x, ok. So, that is the first type of

question. Second is the counting count distinct question which is you have to count the

number of distinct elements in a certain data stream the third question is what is called

the estimating moments question. So, you may want to estimate the average or standard

deviation of counts of last k elements and finally, you may want to find the most frequent

elements in a stream ok.



So, you have to build data structures for answering all these questions in a streaming

model ok, where so, in the last example what you saw is that at any point in time you

were only maintaining a small set of sample of size s, ok. So, a similar computation has

to be done in this particular case, ok.

(Refer Slide Time: 25:44)

So, what are the applications? So, for example, you may want to mind query teams query

streams.  So,  like  Google  wants  to  know what  queries  are  more  frequent  today than

yesterday. Some such question may be asked or you may want to mind a click stream.

So, a web company wants to know which of it is pages are getting an unusual number of

hits in the past hour, ok. So, this can be something like trending pages, ok.

Then mining social network feeds: so looking for trending topics on Twitter, Facebook

etcetera.
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So, then there are applications in sensor networks. So, for example, you may have a set

of  sensors  and  the  sensors  may  be  feeding  in  streams  of  number  something  like

temperature or you know other properties that they are measuring in a stream of numbers

then you may have telephone call records. So, data feeds into customer bills and then

these call records will have to be. So, you may have to answer questions like how much

time did the customer talk in past 30 days or something like that, ok.

Then IP packets monitored at a switch. So, many times what happens is there are huge

switches which basically power the internet. And then you may have to each of these

switches maintain a certain kind of routing tables. So, that you know if the destination

packet is certain IP then which of the links should I send it to forward it to, ok. So, for

that it may need to maintain what kind of packets are coming from which link.

So, a switch will basically have a certain number of ports maybe 32 ports or 62 ports or

something like that and which of these 64 ports a particular IP address is coming IP range

is coming. So, this kind of routing table has to be maintained. Then sometimes you have

to prevent denial of service attacks, ok. So, all these are applications of this.
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Now, the second topic that we will be covering here is dimensionality reduction.

(Refer Slide Time: 28:45)

So, what is dimensionality reduction problem? Dimensionality reduction problem is that

many a times we have to process a lot of data and we assume that the data lies in a 2-

dimensional subspace. So, for example, in this case your data is actually 2-dimensional,

but as you can see most of the data is around this line which is a 1-dimensional subspace

or in this case most of the data is around this plane which is a 2-dimensional subspace of

the 3-dimensional space.
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So, here for example, you can see that. So, for example,  let us say this is this is the

number of times a company has accessed or a customer has accessed a certain entity or

certain database or something like that and now. So, you have this data forward as a

Thursday, Friday, Saturday and Sunday etcetera, but what you can see is that essentially

this data is coming from two different types one is the customer who accesses something

on Wednesday also accesses on Thursday and Friday, but not on Saturday and Sunday.

And, the second is whosoever accesses on Wednesday, Thursday, Friday, or does not

access on Wednesday, Thursday, Friday accesses it on Saturday and Sunday, ok. So, you

want to so, even though this is a 5-dimensional data essentially it is a 2-dimensional data

which is customers accessing it on weekdays and weekends, something like this. So, one

may have to determine this.
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So, basically applications include let us say you want to know which words or topics

occur common occur commonly occur together, ok. So, this is like discovered hidden

topics  hidden  correlations.  Another  important  application  is  to  remove  redundant  or

noisy features, ok. So, for example, you are trying to do some text classification you are

trying to determine the whether a particular text belongs to sports or music or which

category. And then you do not want confusing words you do not want to use confusing

words. So, then also you may want to remove the confusing words as dimensions, ok.

Another application is interpretation and visualizations. For example, if you have data

about which users like which movies. So, from that you may be able to figure out the

different zoners of movies, because users tend to like similar zoners of movies. So, you

may be able to find out hidden features or implicit latent features like zoners of movies.

And finally, of course the application we are most interested in is if you are able to

reduce the number of dimensions then you will be able to more easily store and process

the data. So, with less effort you will be able to process the data.
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Another important application that we will be discussing is the locality sensitive hashing.

(Refer Slide Time: 32:43)

So, consider this scene completion problem, ok. So, consider that you have the following

scene and you want to remove this house, and now the way to do it is that you have a

large database of now images and you want to hit that large database and find some

related scenes and then you want to reconstruct a scene something like this, ok. So, this

is your problem, ok.
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So, for this what you have to do is you have to find let say something like 10 nearest

neighbors from the collection, ok. So, this is like 10 nearest neighbors from collection of

20000 images these slides are taken from the MMDS book which I will refer to at the

end.
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And, these are the 10 nearest neighbors from like a large image collection which is like

20 million images. And then you can basically just use one of the existing images to

complete the scene of this image.
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So, there are many such examples where you may want to find the so, given a particular

data point you may want to find the nearest neighbors of these data points, ok. So, for

example, you may want to find pages with similar words you may want to this may be

used for duplicate detection or classification by topic, you may want to find customer to

purchase similar products, you may want to find images with similar features, ok.
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So, what is the problem definition? So, the problem definition is something like this that

you do not want to find an exact duplicate, you want to find a nearest neighbor, ok. So,



you want to first define some sort of a distance between any two data points, ok. So,

given two data points x 1 and x 2 you want to define a distance between these two data

points and then the goal is to retrieve all pairs of data points x i and x j that are within

this distance threshold, and as you can understand this is an order n square problem, ok.

So, in the case that you are for example, if you want to do a duplicate detection and in

the case that you are n is actually 1 billion which is one billion web pages then you have

this problem which is not solvable because order n square is actually one billion squared

which is like 10 to the power 24. So, this is a very high number, ok.

So, you have to do it in order n time and you can use the trick called locality sensitive

hashing to achieve this. You will learn about this trick in this course.
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The third important area is frameworks for big data computation.
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So, much of the course will be devoted to large scale computing for data mining, ok. So,

in  this  case  the  challenges  the  main  challenges  are  first  how  to  distribute  the

computation. So, what is the best way of distributing the computation, what is the best

way of storing data, what is the best way of how much data should be transferred on

which server. So, if you have a large class of servers then which servers should the data

be processed and so on and so forth. So, this is the problem of how to distribute the

computation and what if you know thus some of the servers fail, hm.

And, the second is actually writing the program for distributed or parallel a computation.

So, this itself is a very hard task, ok. So, we will look at frameworks like the map reduce

framework or this  part  framework which make this  easy and elegant,  ok.  So, this  is

Google’s this is a computational framework that came from Google and which is a very

easy way it is called big data computation framework also and it is an elegant and easy

way to do programming with big data.
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So, examples let say a use you need to count the number of times every 5-word sequence

also called 5 gram in general k gram, every k word sequence that occurs in a large corpus

of documents. And you can write a map reduce program where you write a mapper and a

reducer and you can achieve this task in a distributed manner very easily.
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Similarly, you may want to you may have a large corpus of files where you have the

URL and then the size and the date. And then you want to know the total number of



bytes  of  pages  received  from  a  particular  domain  or  host,  and  many  other  such

computation.
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The last important area that we will be covering in this is the scalable machine learning

area.
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So,  consider  this  situation  that  you have  6 billion  web queries  per  day this  is  from

Google. So, you have 6 terabytes of data and 2.5 petabytes per year. Similarly, you have

10 billion display ads which are shown every day, this is the right media exchange 30



billion text ads per year, 150 million credit card transactions per day 100 billion emails

are exchanged per day. So, these are some really big numbers, ok. So, we know that we

live in the era of big data.

Now, the point is that many of this data are used to train machine learning models, ok.
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So, for example; with the web queries you may want to rank the search results. So, you

take every web query and it is click feedback and you train the ranking algorithms from

the past searches.

So, this is a machine learning task, ok. So, since the data is huge you will have to learn or

you have to run the training algorithm for example, for ranking on a huge data set, ok.

So, similarly you may want to do a segmentation of customers who are shown a display

ads. So, for example, you may want to characterize the customers into high income male

may be low income male and so on and so forth, ok. And then you may want to show to

the advertisers how many of your display ads where shown to high income males, ok.

So, this is called the problem of customer segmentation.

So, this is again a machine learning problem and it has to be done on huge amounts of

data because of the nature of the problem. Similarly, for text ads many a times people

pay per click. So, even though even if you show many times, but there is no there is no

click on the text add then you do not get paid. So, people try to estimate what is called



the click through rate for text ads, and ha and then the estimation of click through rate

again is a machine learning problem. So, maybe you use logistic  regression or some

other model for training the click through rate, ok.

Then you may want to detect fraudulent transactions among the credit card transactions

that happen every day. So, this is again anomaly detection problem which is a machine

learning  problem.  And  then  finally,  you  may  want  to  you  may  want  to  solve  a

personalized spam filtering problem on all the emails that are exchanged, ok. So, this is

multi task binary classification problem which is also again a machine learning problem.

So, for all these cases you need the bottom line is that you need tools which scale which

are able to train machine learning models different types of machine learning model, it

could be ranking, it could be some segmentation model like supervised or unsupervised

models it could be regression something like, click through rate prediction problem or it

could be anomaly detection problem or it could be a multicast learning problem all these

problems need to be solved on large scale data, ok. So, we will discuss techniques of

how you can do this.
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So,  the  main  question  is  how  to  efficiently  train  or  build  a  model  or  find  model

parameters, and many a times training models in machine learning boils down to solving

an optimization problem. So, then the question becomes how to solve the optimization



problem in a in a scalable or fast manner. And we will look at two broad classes; one is

the stochastic or online optimization and the other is the distributed optimization.
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So, many of the slides used here and many of the topics are taken from the Mining of

Massive Datasets book and course.

Thank you.


