
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 08
Waterfall Model

Welcome to this lecture will continue from where we ended last time and we will look at

the second phase of the classical Waterfall Model which is requirement analysis.

(Refer Slide Time: 00:38)

So, look at requirement analysis and specification.

(Refer Slide Time: 00:41)

The main aim of this page is to understand the exact requirements of the customer and

then analyze the requirements. Find out if there are any difficulties in the requirements,

problems, eliminate all the problems and then document this properly.

Almost every developer will have to do this some time or other; it is an important skill

because how will the requirements analysis and specification is done; will determine

whether the project will succeed or fail. So, this is a very important skill to understand

how exactly to gather the requirements analyze the requirements and then document this

properly; we will look at some standard ways of documenting. As we can see from the

name of this phase there are basically two main activities; one is the requirement analysis

and the other is requirement specification.

So, the first activity is requirements gathering and analysis; the second activity is

requirement specification. Let us look at what is involved in requirements gathering and

analysis and what is involved in requirement specification.

(Refer Slide Time: 02:39)

In requirements gathering, we need to gather the requirements, collect the data,

understand what the customer wants. And during the analysis we analyze the collected

requirement; identify there are problems in the requirement, but what sort of problems

can be there in a requirement? There are 3 main types of problems that are normally exist

in a gathered requirement one is called as inconsistency, anomalie and incompleteness.

Inconsistencies means, that one part of the requirement contradicts with some other part

of the requirement. Anomaly is ambiguity some requirements are anomalous or not clear,

in completeness some requirements are missed this should be there, but somehow the

requirement has been missed. So, these are 3 main problems they need to be eliminated

and then finally, that is to be documented in the form of a requirement specification

document called as the SRS document or the software requirement specification

document.

(Refer Slide Time: 04:10)

During the requirements gathering; the relevant gather data is gathered from the end

users, normally done through interviews and discussions. For a business accounting

software might have to interview, meet all the accountants in the organization who are

doing in the manual mode, find out what exactly they are doing right now, what is the

requirement from the software?

(Refer Slide Time: 04:45)

And then once the data is gathered then there will be several contradictions and

ambiguities. Why is it that the gathered requirements will always have difficulties

problems like contradictions, ambiguities?

The main reason is that you are gathering requirement from a set of end user and each

user as is different view of the software. And sometimes the views may contradict each

other and also they might miss out some of their requirements or they may give a

ambiguous statement. Each user has partial and incomplete view of the system and

therefore, that is a main reason why there are difficulties in the gathered requirements.

(Refer Slide Time: 05:51)

All these problems in the requirement have to be identified and resolved, but how will

this be resolved? By discussing with the customers that how exactly that problem will be

addressed. And then once all the difficulties are eliminated from the requirements

gathered requirements, then these are documented in the SRS document.

After few lectures we will look at the exact techniques by which requirement gathering

analysis is done and then the format in which the requirement specification that is the

SRS document will be written. And after the requirements analysis phase is the design

phase; the design phase based on the requirements, the design is done and the design

document is produced. Let us very briefly look at what is exactly involved in the design

activity.

(Refer Slide Time: 07:06)

The design activity typically uses the requirement specification document; the designers

consult the SRS document and then they come up with a design which will be easily

implemented in some programming language; two main approaches are being used the

traditional approach and object oriented approach.

(Refer Slide Time: 07:35)

In the traditional approach, there are two main activities one is to develop the DFD

representation that is called as the structured analysis. And then once the DFD

representation or the dataflow diagram representation is completely done; then it is

translated into a structured designer we will look at this later.

(Refer Slide Time: 08:07)

At the end of the structure design, we will have a high level design in terms of the

module structure. So, this is the module structure what are the modules and what are the

called relation between the modules? And once the module structure is ready; then the

detailed design is done where the data structure for each module and also the functions

algorithms etcetera are designed.

(Refer Slide Time: 08:47)

On the other hand, in the object oriented design which we will also examine in some

depth is that we identify the relations among objects, first identify the objects what are

the relations among them. And then based on that we develop the design for example, the

objects in a payroll software may be the employees, managers, payroll register,

departments etcetera.

(Refer Slide Time: 09:22)

And the object structure is refined into the detailed design; after a few lecture we will see

how exactly the objects are identified? How these are refined into the detailed design?

But then the object oriented design technique has become very popular, it offers several

advantages lower development effort, lower development time and better maintainability.

Once the design phase is complete; next the coding is undertaken, here based on the

design document the coding is done and after that the testing activities are done.

(Refer Slide Time: 10:15)

During the coding phase each module of the design is coded typically its developer is

given couple of modules to code and then completes the code and also does the unit

testing. And once this passed the unit testing then the modules are documented and this

phase completes.

The next stage is testing, so during coding not only the code is written, but the modules

are unit tested. The next stage is testing where integration and system testing is done.

(Refer Slide Time: 11:03)

During integration testing the different modules are integrated in a planned manner that

is there are number of steps through which the modules are integrated. Maybe initially

these 4 modules are integrated; to integrate these modules the main idea is that we check

whether they are interacting properly.

The interface bugs are the main focus in the integration testing; during unit testing the

bugs in the different modules are identified. And the integration testing the main focus is

determining if there are any interface bugs. And in the next step more modules may be

integrated and again the interfacing between them is checked. So, the system is

integrated over a number of steps and each time; it is tested to check if there are any bugs

and the typical focus of the integration testing is to identify the interface bugs.

(Refer Slide Time: 12:29)

Once all the modules have been integrated and the system testing is carried out; system

testing the fully integrated system is checked to see if it meets the requirements that are

experienced by the customer.

So, the goal of system testing is to check if the developed software satisfies all the

requirements that have been expressed in the SRS document. And once the system

testing is done, the software is delivered to the customer and then is the starting of the

maintenance phase; where if there are any bugs reported by the customer, they may get

fixed enhancements and so on; the maintenance phase continues for quite long time.

(Refer Slide Time: 13:38)

We said that earlier that maintenance takes maximum effect; much more than the effort

required to develop the product itself. Because maintenance occurs over a long time; the

lifetime of the software is large, the development time is only a small fraction of the

lifetime. And typically the effort for maintenance is much more and the development

effort to maintenance effort is typically 40 to 60; that is 40 percent development effort

and 60 percent maintenance effort.

(Refer Slide Time: 14:20)

But let us look at what are the reasons why maintenance may be needed? That we call as

the types of maintenance. There are 3 main reasons why maintenance may be needed;

one is that bugs may be reported and need to correct those that is called as corrective

maintenance.

It may be necessary to enhance the functionalities that is hard new functionalities which

were not visualized earlier or improve the implementation in some way maybe the

response time is not satisfactory; try to improve the response time and so on; that is

called as perfective maintenance. And the third type of maintenance is adaptive

maintenance.

In adaptive maintenance the software may be required to work with a new hardware;

may be that the company procured a new server and it has to be installed on that; needs

to work on this. Or maybe there is a new operating system on the software sorry on the

new computer. And it needs to work with a new operating system and therefore, the

program may have to be change little bit. So, this is called this kind of maintenance is

called as adaptive maintenance.

So, there are 3 reasons why maintenance may be needed for a software one is called as

corrective maintenance. This maintenance required to correct bugs perfective main

maintenance to make the software more perfect like add new features, make the

implementation, more efficient and adaptive maintenance where need to make it work

with other types of software hardware and so on.

(Refer Slide Time: 16:34)

 The classical waterfall model is very simple; it matches with the intuition, but then it

cannot be used or it is very difficult to use in a real life project. The main difficulty that

will be observed when if we try to use the classical model in a real project is that it has a

waterfall, where it can only go from one stage to the other stage.

Once a stage is complete no further activity on that stage occurs it transits to the next

stage. But what if there was a design error which was discovered during let us say

testing. Because every programmer makes mistakes and it may not be that all mistakes

are discovered within that phase; maybe a mistake will be discussed much later. And

therefore, the classical waterfall model is idealistic; assumes that no mistake is done or

no mistake escapes a phase. In practice there are many mistakes which are committed

and escaped that phase.

(Refer Slide Time: 18:01)

And therefore, we need to as soon as there is a problem reported or might have to repeat

some activities in the phase in which it was done; correct those not only correct that

correct the subsequent document also. For example, if there is a requirements problem

not only correct the requirement, but also may have to do the redesign; redesign parts

and change the code and so on. But then if we understood that much let me ask this

question that the later the phase in which the defect gets detected; the more expensive is

its removal. So; that means, if a requirement is let us say faulty, there is a mistake in

doing the requirements and let us say we discovered the mistake in the requirement

during the design phase.

Then we need to rework the requirements and that has some cost, but let us say we had a

mistake in the requirements; in the design phase we did not discover nor in the coding

phase, but we discovered the requirements problem in the testing phase. Then it will be

much more expensive that is what we are asking here that why is the latter the phase the

defect gets detected, the more expensive is the removal.

The answer is that we need to rework the results of many phases; if we discussed, if we

detect the problem requirement problem during testing; then we not only have to take up

the requirements document and change all the requirements that are in problem, need to

redesign, need to change the code and again need to test. Obviously, that is much more

then if we had discovered the problem during the design stage; we might have to just

change the requirements and some part of the design.

(Refer Slide Time: 20:34)

So, once a defect is detected in a latter phase; we need feedback paths in the classical

waterfall model.

(Refer Slide Time: 20:51)

A defect of one phase may get detected in any of the later phase and as it is detected; we

need to rework the results produced at that phase. And therefore, we need the feedback

paths need we should be able to revisit that phase and that is basically the representation

of the iterative waterfall model, where we have added feedback paths to the classical

waterfall model.

(Refer Slide Time: 21:28)

But one thing is that the principle that the later the defect is detected, the more expensive

it is. That gives us an idea is that if we detect the defect in the same phase itself, then it

will cost the least. For example, if the design problem is detected in the design phase;

then we just correct that there itself. But if we detected this during coding and unit

testing not only we need to change the design, but also change the code.

So, the programmers commit mistakes that is universal; that programmers do commit

mistakes. But then the main idea here is that we must be able to detect those mistakes as

quickly as possible and within the same phase for the cost of the correction to be low.

And this is called as the phase containment of errors the errors must be detected within

the same phase in which they are introduced. And the reason we want to have phased

containment of errors is that it will cost the least; this is a very important principle the

phase containment of errors.

(Refer Slide Time: 23:09)

We will already discuss the phase containment of errors; we will not spend more time

here. And need to mention that the iterative waterfall model was used very heavily and it

is one of the fundamental model in the sense that all other models are derived from this

model.

(Refer Slide Time: 23:43)

The waterfall models are easy to understand and easy to use, the inexperienced staff who

never had any project experience. If they work in a project using the waterfall model

they can easily relate to the model and feel comfortable. As far as the project manager is

concerned the milestones here are well understood phase entry phase starting and so on.

The requirements have collected in the beginning and based on that the development

starts.

So, the requirements do not change during the development and also the strong

management control. In the sense that based on the requirement have been completed it

can plan how long the design will take, coding will take and then track the project.

(Refer Slide Time: 24:49)

But what are the deficiencies of the waterfall model? One of the major deficiency of the

waterfall model is that it requires all the requirements to be gathered and documented.

And there is no scope to change this later on, but it is often the case that all requirements

cannot be given; somebody can miss out on requirements, requirements may change and

that cannot be accommodated in a pure waterfall model of development.

It lacks flexibility because requirement changes etcetera cannot be accommodated. It can

give a false impression of progress because we find that requirements complete, design

complete, coding complete.

(Refer Slide Time: 25:54)

But then during integration problems may occur. Typically this is the scenario that the

project is on time, everything is under control, the project manager is happy,

requirements; design everything is progressing fine and then the integration begins. And

from here; the problem starts actually, the project starts getting delayed. This was the

time by which the system testing should be over, but unfortunately the integration

problems occur here. Because till now it was under the grasp of one developer who has

done the unit testing, but then the different developers they have made different

assumptions and they do not integrate well; this typical projects scenario.

And the problem start during integration testing and the project starts getting delayed;

delayed. The project manager announces the new delivery date again has to change it and

so on. This is a typical problem of the waterfall model is about late integration.

(Refer Slide Time: 27:46)

And this the project manager initially gives a gets a impression that everything is under

control, project is proceeding as per time, but then suddenly the project starts getting

delayed. So, the waterfall model often observed that it gives a false impression of

progress.

One of the main reason is that integration is only at the end and many times, the problem

start once the integration activity start. And also during the time that the development

system is under development; the customer is entirely under dark. Only after the

development completes is the system installed, but then may typical development may

take several months until that time the customer has no clue what has happened to the

software, will it be delivered, what will it be like and so on.

(Refer Slide Time: 29:06)

The waterfall model is used now also for projects which are well known the development

team are very familiar with this kind of projects, they have done many projects. The

requirements are known and stable, the technology is understood, the developers have

done this many times. The development is experienced in developing this kind of

projects.

If this is the situation, these basically simple projects which has been done by the

development organization many times and the requirements are known and stable, they

do not change. Let us say an accounting package, let us say a company develops the

accounting solution for different customers.

And they have experience solved many problems and now they want to you do an

accounting software for a new customer. The developers are experienced on accounting

software technology well understood; the accounting requirements are almost stable. And

then in this case a waterfall model will be a suitable model. We will stop at this point and

we will look at the other models, life cycle models and the type of projects for which

they are suitable, how they differ from the waterfall model and so on; we will stop here.

Thank you.

