
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 57
MC/DC Coverage

Welcome to this lecture. In the last lecture, we are discussing testing branches and we

said that the simple branch decision coverage testing is not really a good enough testing

bugs can remain, if the branch condition contains multiple sub expressions. And, then we

looked at the basic condition coverage testing and then we said that even though it

overcome some short comings of the branch coverage testing, but it is not really a

stronger testing than branch coverage. And therefore, we considered the condition

decision coverage testing.

Where, the basic condition testing is achieved and the same time branch coverage is

achieved but then we are trying see, which is the strongest branch testing strategy and we

said multiple condition coverage testing. Where each of the sub expression is given all

possible combinations of truth values, but then the number of test cases became

exponential let us continue from that point.

(Refer Slide Time: 01:45)

Let us consider a Boolean expression having n sub expressions or components.

The multiple condition coverage MCC, MCC or the multiple condition coverage will

required 2 to the power n test cases. And, that is the reason why MCC testing is not

considered practical, if the numbers of sub expressions are more.

(Refer Slide Time: 02:37)

Even, if we have a 5 clauses here this example expression just 5 clauses. And, to test for

multiple condition coverage, we need 2 to the power 5 test cases and that is 32.

But, then we will see that short circuit evaluation reduces the number of test cases to a

more manageable level. The short circuit evaluation means, that compiler while

evaluating, it infers whether it needs to evaluate further. For example, let us say a is true

and let us say c is true. Then the others the compiler does not really bother because they

will have no effect if a is true then this expression is true.

And, if c is true then this is true and if e is true and then terms have to be true d does not

matter. So, b and c whether it is true and false it does not matter. So, you can just

consider one of that. And therefore, the number of test cases reduces by 1, but what about

if let say a is true and c is false. Then this becomes false irrespective of the value of the

b, and let say d is false so; that means, this is false. And therefore, e does not matter.

So, we can just consider one of the 2 possible test cases. And therefore, the number of

test cases may not be 32 due to short circuit evaluation technique used by the compilers,

because they want to execute fast and they see that if the truth value can be inferred as

they evaluate then they do not evaluate the other once. So, even though we are saying

that 32 test cases are needed, but then depending on the compiler the short circuiting

approach that, it takes we might need much less than 2 to the power n to achieve the

multiple conditions coverage testing.

(Refer Slide Time: 06:01)

So, based on our discussion so far we can say that the statement coverage is the weakest

testing. And, so is the basic condition coverage testing, but then they are not comparable

because basic condition testing does not ensure statement coverage testing and vice

versa, but then the branch coverage testing or the decision testing is stronger than the

statement coverage testing.

And the condition decision coverage testing is stronger than both basic condition testing

and the decision testing. And, the multiple condition testing is the strongest of all this,

but the only problem is that is not practical, when the number of sub expressions is large.

(Refer Slide Time: 07:04)

We had seen that the short circuit evaluation approach used by compilers often reduces

the number of test cases to achieve multiple condition coverage. Also, we must

remember that certain coverage may not be achievable. Let say we have expression like

character is A or character is E. Here, we cannot achieve the basic condition coverage

also, because we cannot have we can achieve basic condition coverage, because we can

have this as true and this as false and this as true and, this as false.

We can achieve basic condition coverage testing we can achieve decision coverage

testing, but can we achieve condition decision coverage testing. That also you can

achieve, but what about multiple condition coverage testing. Can we achieve both of

these true at the same time no, because the character cannot be same at the same time A

and E. So, multiple condition coverage testing will we cannot achieve for this.

And, that we must keep in mind that we cannot achieve multiple condition coverage

testing even though we deploy 1000s of test cases, we cannot achieve multiple condition

coverage even for simple expressions.

(Refer Slide Time: 09:31)

Let us look at few more short circuit evaluations. In this expression, there is a and here.

And therefore, wherever there is a and if one of the sub expression evaluates to false,

then the clause has to the decision has to evaluate to false irrespective of the other

clauses.

The compilers take advantage of this and as soon as they find a false here in this kind of

expression, they will not evaluate the others. They become don’t cares and the outcome

will be false. Whenever there is a or condition, whenever there is any sub expression

evaluates to true, then the others become don’t care and the decision evaluates to true.

The decision will become true, even if one of that is true. And, if the compiler deploys

short circuit evaluation, it can save lot of time and skip evaluation of sub expressions.

(Refer Slide Time: 11:01)

Now, let us look at a test strategy, which is the strong testing strong testing for decisions.

It overcomes the problem of the multiple condition coverage testing, which required

large number of test cases. When we had a decision involving let say 10 sub expressions

for multiple condition coverage might need 2 to the power 10 test cases which is a about

a 1000 test case, but if we use the MC DC testing that is multiple condition and decision

coverage. Then we might need let say 7 or 8 test cases, but this 7 or 8 test cases, we can

see experimentally that it is almost as good as the multiple condition coverage testing.

And, undoubtedly the multiple condition decision coverage and MC DC coverage testing

is a very powerful strategy with very small number of test cases; it can achieve a

thorough testing of the branches. And therefore, it is a very popular technique and

incorporated into many testing standards now, let us look at the MC DC testing.

(Refer Slide Time: 12:38)

Here, we need to test all possible outcomes for each of the conditions. These are the

basic conditions, but then we require that they independently affect the outcome of the

entire decision.

What it means is that, we not only require that each of the sub expression achieve true

and false values, but also while the rest of the expression is held at some truth value. If

you make this true to false then the decision should also change. The decision outcome

will become false, if we make this as the falls and if we make this as the true then the

decision outcomes would become true. Our test cases would be able to achieve that and

then we will say that this satisfies MC DC coverage criteria.

(Refer Slide Time: 14:01)

So, here the MC DC coverage requires that for every basic condition in a complex

conditional statement. The compound condition evaluates to true and false as the basic

conditions are given true and false values. Let us explore further about this test

technique.

(Refer Slide Time: 14:29)

So, for we looked at the condition decision coverage testing, it achieves both condition

coverage and decision condition coverage. The multiple condition coverage testing

which required exponential number of test cases, but it was a strong strategy. And, now

we are going to discuss about the MC DC, where the bug detection effectiveness is very

similar to the MCC, comparable to the MCC.

But, the number of test cases is linear in the number of basic conditions. If, we can draw

the subsumption hierarchy, we can see here that the MC DC testing is requires small

number of test cases. It is stronger than condition decision coverage testing, but of

course, it is weaker than the MCC multiple condition coverage testing. But multiple

condition coverage testing requires huge number of test cases, but MC DC testing

achieves testing, which is very close to the MCC testing. So, that is the reason why MC

DC testing is a important test strategy used extensively during testing.

(Refer Slide Time: 16:01)

Now, let us try to understand, what is MC DC and how to design the MC DC test cases.

As we have been already using the terms condition and decision, the condition is the

atomic condition in expression or is a sub expression. The decision is the outcome of a

decision statement and controls the program flow, already seen what are the basic

conditions and what is the decision. The main idea in the MC DC testing is that given an

expression having multiple atomic expressions or conditions, each condition must be

shown to independently affect the decision.

That is if we have a expression like a greater than b, a greater than 10 or c equal to 5 and

d greater than 50. Let say this is our expression or the decision statement, now for

achieving the MC DC will hold it with some value let say c equal 5 and d is equal to let

say 60. And, then as we make a greater than 10 that is true, then the outcome should be

true and if I make this is false the outcome will become false.

And, similarly if you hold this and this 2 some values some truth outcomes let say this is

true and this is let say true. And, then if we make this as true and false the decision

output the decision outcome should also become true and false. Similarly, for this clause

the third clause sorry the second clause, if we hold these 2 in some true and false values

let say this is true and this is true. And, if we toggle this sorry this is false and this is true.

And as we toggle, this second sub expression to true and false then the outcome will

toggle to true and false. Let see does it really do we have held this first sub expression to

false.

The last sub expression to true, now if we make the second sub expression to let say true

then this evaluates to true and then this is also true. So, the outcome will be true, but

what if we make this as false? So, let say now then try with false here so, this is false

already this is so, this becomes false and this is true. And therefore, the outcome will be

false. So, we can say that if I hold the first sub expression to false, the second sub

expression sorry the last sub expression to true, then if we toggle the second sub

expression to true and false the decision outcome also toggles to true and false. We need

to do that for every sub expression, that it will independently affect the outcome of the

decision. So, that is the main idea here in the MC DC testing.

(Refer Slide Time: 20:24)

If, we formally write down what we need during MC DC testing, the first requirement is

that the decision should have got true and false value by the test cases. Every condition

or the sub expression must have got true and false values during the testing. And, also

each sub expression should independently affect determine the outcome of the decision.

So, these are the 3 requirements.

(Refer Slide Time: 21:11)

Let us try to understand with some examples. Let us look at this expression a greater than

10 and b less than 50 and c equal to 0 then something. And, we want to test it such that

the test cases will achieve MC DC coverage.

So, we need to assign the first sub expression true and false values such that the decision

will become true and false. So, the first thing is that the decision as a whole should

become true and false.

 (Refer Slide Time: 22:01)

And if we assign true and false to this that is a is 20, which is true and a is 5 false then

the outcome should also become true and false. So, for what values of these 2, if you

held hold them constant will this toggle the output as it become true and false. So, if we

have this true and this true that is b is 20 and c equal to 0, then this sub expression

becomes true and see here there is a and here. So, is this is true then the outcome the

decision becomes true, if this is false then this is true and outcome becomes false.

So, as the first expression becomes true and false, if we hold these true to true and true

then the outcome the decision outcome toggles. Similarly, we need to do for the other

two sub expressions.

(Refer Slide Time: 23:32)

So, for these as it becomes true and false, we need to hold these 2 such that the outcome

becomes true and false and also for the last sub expression so, that is the requirement for

MC DC.

(Refer Slide Time: 23:52)

And, what are the values which will achieve MC DC coverage for this; one is that we

hold this to true and this to false, if this is or and then as it toggles between true and false

this will the decision will toggle between true and false. And, for this situation for the

second sub expression, if we hold this to true and this to false then the outcome decision

outcome will toggle between true and false. Similarly, if you hold the first one to true

and second one to false, then the third sub expression as it becomes true and false the

decision will toggle between true and false, but then the question remains that given a

complex expression, which is having a large number of sub expressions are conditions.

How do we design the test cases such that MC DC coverage will be achieved?

(Refer Slide Time: 25:03)

Let us first look at an example so, it will another examples such so, that we can get the

idea, about how to achieve MC DC coverage? We first develop the truth table and then

we check that if the first one is true, then how can the output this is true? And for this one

the outcome is true, this one first sub expression is true and the outcome is true and scan

here and see that for same values of the other sub expressions; here as we toggles

between true and false the outcome becomes false.

So, these 2 test cases together will achieve the independent evaluation of the first

condition. What about the second condition? The second condition, we scan through the

truth table. And, find that when this is true and others are true false true this is true. And,

when this is false then the others are held true false true and we get false. So, these 2

together achieve the independent evaluation of the second clause, the third clause is

when this is true and the others are the false true and true and this is false others are false

true and true then the outcome toggles. So, we also need this and so on.

So, for every condition we look at the truth table and then we examine that when does

the output toggle. The decision outcome toggle when the specific condition toggles. So,

this is the main idea behind MC DC, we are almost at the end of this lecture will stop

here and continue in the next lecture.

Thank you.

