
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 55
White box Testing

We had discussed that there are many white box testing techniques, but we need to

discuss one important concept, that whether we need to test all of these different testing

techniques. Whether, we need to do testing using all this half a dozen or a dozen testing

techniques. For that we must understand the concept of a stronger testing and a weaker

testing.

(Refer Slide Time: 00:46)

The idea here is that different testing techniques they cover certain program elements. A

stronger testing covers all the elements that have been covered by a weaker testing. That

means, if you are doing a stronger testing all the program elements that have been

executed by a stronger testing includes the weaker testing or in other words if, you are

doing a stronger testing, weaker testing is not necessary. We need not again design test

cases for weaker testing. As, long as we do a stronger testing weaker testing need not be

done it is ensured automatically by a stronger testing.

(Refer Slide Time: 01:52)

It may be possible that two white box test strategies are complementary, that is they

execute some program elements, which are common strategy 1, test strategy 1 it executes

elements some of which are overlapping with strategy 2. If 2 test strategies are

complementary, then we need to conduct testing using both strategies.

(Refer Slide Time: 02:30)

If, we represent the stronger, weaker, and complementary, we can see that the test

strategy, which is covered by the green all the elements here by the green strategy. They

cover the weaker strategy which is given in pink. Therefore, as long as we are doing the

testing for the blue coverage we need not do the weaker testing, but see here this is a

complementary test strategy, which execute some elements here for the other strategy,

but it also executes additional elements. And therefore, we need to do testing with both

this strategies; we only can eliminate the weaker strategy.

(Refer Slide Time: 03:34)

Now, based on the basic concepts that we discussed, now let us look at the different

white box testing strategies. The simplest strategy is statement coverage. The idea here is

that we need to execute every statement in the program at least once. We just look at the

source code and design test cases such that every statement is executed at least once.

(Refer Slide Time: 04:12)

The principal idea behind this technique is that, if some statements are not executed we

never know if there is a bug in that. And, that is a reason why we want every statement to

be executed by the test cases. Such that, if there is a bug in the test case it will probably

get expressed when we execute that test cases.

(Refer Slide Time: 04:43)

But, we must also understand that the statement coverage criterion has deficiency,

because just by executing a test case once is no guarantee that all the bugs have been

expressed, but then it is better than not executing all statements. So, we must ensure that

all statements are at least executed once, but what we are trying to say here that just

statement coverage may not be enough, we met achieve statement coverage, but then it

may not guarantee that good number of bugs majority of the bugs have been exposed.

Because just by executing it is statement once may not be exposing the bugs present in

that statement.

(Refer Slide Time: 05:43)

Now, let us see how the statement coverage is computed? Here, we count the total

number of statements in the program and we track how many statements are executed by

the test cases. So, the percentage of executed statements by the total number of

statements, that gives us what is the coverage achieved. If we have 500 is the total

number of statements. And, we have executed let us say 100 statements by the test cases

we have achieved only 20 percent statement coverage. It is a very simple strategy, but

then it is one of the basic strategies and other strategies that will see, they will achieve a

more stronger testing than statement coverage let us discuss those techniques.

(Refer Slide Time: 06:55)

Before, that let us take an example we have this code here simple code, while x is not

equal to y, if x greater than y then x equal to x minus y else y equal to y minus x. If you

remember this is the GCD computation Euler’s GCD computation code. And, we want to

see, what are the input values? For which statement coverage will be achieved. There is a

decision here only if x is greater than y, then x this statement will get executed.

And, if x is not equal to y this statement will get executed. And, this will be executed

only if x is not equal to y, if we test it with x equal to y, then all this will not be tested.

So, first need to check whether x is not equal to y and then we must have x greater than y

and x less than y.

So, this is the Euclid’s GCD Algorithm and we know the specific values for which

statement coverage will be achieved, but then given a large enough program, it is very

hard to identify what are the specific values for which the statement coverage is

achieved. And fortunately for white box testing, we do not really design test cases by

looking at the specific values and see what will execute which one and so on. We have

software to measure coverage statement coverage let us say and then we just keep on

giving values to this test cases to the software. And, then the coverage tool will tell how

much cover is achieved? We keep on testing until we achieve sufficient coverage.

 (Refer Slide Time: 09:41)

Now, for this specific example the Euclid’s GCD program, if we choose these are the

different values then statement coverage achieved and as I saying that in reality for large

programs, we do not have to identify the values for which statement coverage is

achieved, but to understand the concept. What is statement coverage maybe for a small

program? We might have to identify value such that statement coverage achieved or

given a some values or test cases we should be able to tell that, whether statement

coverage will be achieved.

(Refer Slide Time: 10:22)

The next white box strategy that we will discuss is the branch coverage. Another, name

for branch coverage is decision coverage. The main idea here is that in very program

there are many decision statements, the decision statements can be of the form if some

condition execute some statement else, execute some statement or it may be while

something keep doing something or it may be for and so on. These are examples of

decision statements. And here the idea in branch or decision coverage is that every

decision statement here. They must be taking true and false values. So, it should at least

the test cases ensure that it goes inside the loop and also it exits the loop.

Similarly, for if both this take place that is the condition is true and false. And, similarly

for the for it should enter into the loop and also for some test input it should not enter

into the loop. So, every condition in a conditional statement every branch condition must

take true and false values that is our test cases should ensure that. Now, if we look at the

same function here the Euclid’s GCD algorithm, we find that the decision statements are

here and here. There are 2 decision statements and our test cases must make this once

true make this once false. And, similarly this should be true and false and for very small

programs we can design the branch coverage test cases.

But, in normal practical situation we do not have to design the test cases branch coverage

test cases, we just keep on giving input and coverage tool will tell us, what is the extent

of branch coverage that is achieved. And, we keep on giving data until you get sufficient

branch coverage.

(Refer Slide Time: 13:18)

So, for that simple program Euclid’s GCD we can design some test cases which will

achieve the branch coverage.

(Refer Slide Time: 13:33)

But, how do we measure coverage? If, we are giving executing the program using test

cases how does the coverage tool that will report the extent of coverage achieved.

 (Refer Slide Time: 13:52)

It will find out all the possible branches that are there on the code number of branches

and how many branches have been executed? If, it is a while condition then there are 2

branches; one branch is that it is true, it enters into the loop and false exits. Similarly

every condition conditional statement must achieve true and false values, during the

execution of the test cases.

So, each of this will be computed 2 here, if we have n decision statements, then the

number of branches will be 2 into n. And, then the coverage tool can find out how many

of these branches true and false are taken and, then it will report the extent of branch

coverage achieved.

But, then one thing we must be clear is that, which is a stronger test is branch coverage

or statement coverage, because if we can say that which is stronger testing we need not

do the other testing, but then if we say that something is stronger, we must be able to

show that it is stronger testing. Now, here between branch coverage and statement

coverage, we can say that branch coverage is stronger than statement coverage, because

every statement must be there on some branch. So, that is our argument here that if there

is a statement in a program it must be there on some branch. And therefore, if we are

covering the branches, then all statements must have been covered. So, branch coverage

ensures statement coverage.

But, then the question comes that is it possible that branch coverage ensures statement

coverage, but is it possible that branch coverage guarantees statement coverage that we

could show now, but we have to also show that there are some branches, which are not

ensured by statement coverage. Otherwise they will become identical to show that it is

stronger we have to show not only that branch coverage ensures statement coverage, but

we have to also show that statement coverage does not ensure branch coverage. Or in

other words, there are some branches, which may not get executed even though we

achieve statement coverage, how do we show that?

One way we could show that, branch coverage guarantees statement coverage because

every statement must lie on some branch.

(Refer Slide Time: 17:47)

So, a stronger testing as we said is a superset of weaker testing, if we are doing stronger

testing, we need not do the weaker testing if we are doing the branch testing, we need not

do the statement coverage testing, but then so far we have showed that state branch

coverage ensure statement coverage, but we have to also show that statement coverage

does not achieve branch coverage.

(Refer Slide Time: 18:21)

So let me just give one example here that will ensure that statement coverage does not

achieve branch coverage. Let say we have a statement if c 1 then a is equal to b. Now, let

us say that c 1 is true, then we achieve the branch coverage here sorry the statement

coverage c 1 is equal to true achieves statement coverage, but it does not achieve branch

coverage because c 1 is false has not been ensured. So, just achieving statement coverage

and this code is not ensuring branch coverage and the code. So, this a simple example,

which says that branch coverage does not ensure statement coverage.

There are many coverage tools and coverage tool as the test case are executed, it displays

coverage report. In the coverage report it displays that, what are the statement coverage,

branch coverage, etcetera achieved for different functions.

(Refer Slide Time: 20:14)

And also, many tools that display what are the statements that are still not got executed.

So, these are shown in the red and we know that statement coverage has not been

achieved and these are the statements that have not been executed so far.

(Refer Slide Time: 20:38)

So, we have seen that branch coverage is stronger testing, a branch coverage achieve

statement coverage, but the converse is not true. The statement coverage, if we achieve

statement coverage that does not mean that branch coverage has been achieved.

(Refer Slide Time: 21:01)

Now, so far we have looked at the statement coverage and branch coverage, but is a

branch coverage is a good enough testing connect miss some bugs, that is we achieve

branch coverage, but then some types of bugs are not exposed. And, this is what we are

going to discuss now. That we have a certain branch condition, if digit is high, if digit

high is 1 or digit low is minus 1 then do some action A.

Now, the problem here is that we achieve. If digit high is 1 or digit low is minus 1, then

the action is A else action is A 1 and so on. Now, let us say we achieve branch coverage

here, that we have this branch condition is true. So, A is executed branch condition is

false and then A 1 is executed, but then just observe here that to get this true, we might

have digit high equal to 1, that will make it true irrespective of digit low is minus 1. And,

let us say we have digit high is 0 and digit low is not minus 1 and then this becomes

false. So, we have achieved both high both true and false for this specific branch.

But, then let us say that we have some action here, where the which will encounter a

failure only when digit low is minus 1. In that case we will not be able to discover that

bug by testing. And therefore, not only that we must ensure that the decision is both true

and false, we must ensure that all component conditions here are clauses are true and

false. So, branch coverage even though it is a strong testing, but then it may not achieve

it may not expose many types of bugs. And, we might have to do a stronger testing and a

stronger testing is component clause in the decision statement must achieve both true and

false values.

(Refer Slide Time: 24:24)

And, that brings us to the basic condition coverage; in the basic condition coverage each

component condition must achieve true and false values. So, if we have if a or b, then a

must be true and false the test cases must ensure that a test true and false values be also

test true and false values.

In the basic condition coverage, we must ensure that the component clauses here on the

decision statement take true and false values. So, each component of a composite

conditional expression must take true and false values.

(Refer Slide Time: 25:35)

Let us consider the example if a greater than 10 and b less than 50. Now, if a equal to 15

and b equal to 30. So, a is 15 this becomes true and b is 30 this becomes true. Now, for

the other test case a equal to 5 b equal to 60 a is 5 5 less greater than 10 is false, and b is

60 60 less than 50 is false.

So, these two test cases ensure that both the component clauses, ensure achieve the true

and false values. And, if there is any expression in including dozens of clauses, it is

possible that only 2 test cases may be able to achieve basic condition coverage. Because

one test case may give all true and another test case may assign false to every condition.

And therefore, it is possible that in some large decision statement, consisting a many

clauses just 2 test cases may be able to achieve basic condition testing. And, that gives us

a hint that this may not be a very strong coverage criterion, but then does it ensure if we

achieve basic condition testing, does it ensure branch coverage we need to answer that

question is the basic condition testing a stronger testing than the decision coverage or

branch coverage, or is it a weaker testing or is it a complementary testing. Now, we are

almost at the end of the lecture, we will discuss this point and other white box testing

strategies in the next lecture.

Thank you.

