
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 54
Pairwise Testing

Welcome to this lecture. In the last lecture we discussing Pairwise Testing and, we had

mentioned that the combinatorial testing techniques like a decision table based testing. If,

the tendency to generate a large number of test cases, when the number of input

conditions are large, actually the number of test cases are exponential in the number of

input conditions.

(Refer Slide Time: 00:47)

And, we are discussing about reducing the number of test cases and pairwise testing is a

very promising way of reducing the number of test cases. And, we are trying to get some

insight into how does the pairwise testing produce such a thorough testing with a very

very small number of test cases; a drastic reduction from a million test cases to about 7

or 8 test cases and so on.

And, for that we are trying to discuss the characteristics of the bugs. And, we are saying

that the bugs are such that as long as input condition has some value, if the bug is

expressed as a failure then we call it as a single mode bug. So, a single mode bug, when

there is a certain input value is given, then irrespective of all other input the failure

occurs. Just to give an example: as long as the duplex option is chosen on the printer

dialogue box. There may be other options this duplex this is the printer type color or

black and white and so on. There are many options here. Irrespective of all other options

as long as you duplex is selected: yes, then the print gets smeared.

So, if we think of the code if this becomes yes, then in the printer code there is some

problem as long as this becomes yes. So, this is called as a Single-mode bug. The bug

expresses itself, when as long as some input condition is given value, certain value.

(Refer Slide Time: 03:16)

A double-mode fault occurs when 2 options have a specific combination.

Let us say, we have many inputs many input parameters. And, as long as this is given a

value of 5 and this is given 7 then the problem occurs, but if we have given them

separately a value of 5 and at that time it is 8 and this is given 6 and this is 7. So, even

though the 5 7 it is tested, but a test case. So, these are test cases, which have values for

all the parameters defined.

As long as they are getting the value 5 and 7 for these 2 parameter there is a failure, but

for all the other combinations it works. An example is that the printout smeared only

when the duplex is selected and the printer model is 394. So, a duplex option is checked

yes and also the printer model there are many printer, the printer model is selected to be

394, but if same 394 works when it is not duplex and with duplex any other printer will

work.

But, then to get a further insight into how does this? How does this happen? That a

specific combination of condition causes the problem, some input variable a specific

combination of the values of some 2 3 or so, input values. They express themselves as a

failure whereas, individually they may be taking the value, but that does not cause the

problem.

(Refer Slide Time: 05:32)

We will see a code example and understand why that situation occurs?

In general you can have multi-mode faults. As long as all the input parameters that are

given, they have some specific combination of all the input parameter causes the

problem. It can be 3 way faults when 3 specific inputs have some value combination; it

can be 4 way fault, and so on.

(Refer Slide Time: 06:10)

Now, let us try to gain the insight into why this occurs? That we have pair wise that is

single mode and double mode faults are the majority of the faults. Let us look at this

code here a simple code here and we have some 3 inputs x y z. And, then we have caused

we have conditions defined on this input.

If, x is equal to x 1 so, so, we are reading 3 values x y z these are our input and if x is x 1

and y is y 2 then output is some f x y z. If x is x 2 and y is y 1 then output is g x y, but

then the programmer has missed one of the condition here. If x is x 2 and y equal to y 1

then the output should be f x y z minus g x y, but then he has written here else output is f

x y z g x y. So, this will work fine as long as we give x x 1 y y 2 etcetera, etcetera all

possible combinations it will work, but it will fail only when x is x 2 and y is y 1. So, a

specific combination between x and y to it will fail and that is here.

Instead of displaying f x y z minus g x y it will come here under the else and it will

display f x y z g x y. And, this is a typical code that appears in many programs. And

therefore, the expressions are formed using pair or 3 combinations of conditions. And, if

there is a problem under that then if specific values are given such that this becomes true,

then only the condition in the failure will appear.

So, in this case when x is x 2, when x is x 2 I should make it x 2, when x is x 2 and y

equal to y 1 f x y z minus g x y should have been updated, but it actually displays f x y z

plus g x y, that is the problem and unless this x is given x 2 and y is given y 1 the

problem will not be detected.

(Refer Slide Time: 09:30)

This occurs in many many examples; let us consider android based smart phone testing.

The android has many environmental variables global variables. And the global variables

are whether the hard keyboard hidden no undefined yes keyboard, keyboard is 12 key,

nokey, qwerty, navigation, navigation touch screen, whether it is a finger no touch,

screen it is a stylus or undefined screen layout small, large etcetera, etcetera. So, just see

here that the number of options required to do an exhaustive testing is if we see that this

is 3 option 3 option, and so on.

To do an exhaustive testing we need 172800 test cases, which is a large number, but if

we consider pairwise or 3 way testing or 4 way testing, then the number can drastically

reduced to a manageable number. And we would have also detected almost every bug

and that is why the 3 way testing is a very attractive way, it makes combinatorial testing

techniques practical.

(Refer Slide Time: 10:58)

Now, let us discuss about white box testing. So, far we have been discussing black box

testing. And, we looked at several test strategies of black box testing. Now, let us look at

white-box testing.

(Refer Slide Time: 11:21)

White-box testing as we mentioned earlier, here the test cases are designed based on the

code structure of the program. We must have the code available to us we examine the

code and based on the code we designed this test cases, the white box test cases. And

therefore, it is also called as the structural testing, because the test cases are designed

based on the code structure.

(Refer Slide Time: 11:52)

Again, we have 2 major categories of white box testing; one is called as coverage-based

testing, the other is fault-based. In coverage-based testing, we see the program elements,

we observe the program elements and based on that, we design test cases such that the

program elements are covered. The program element can be a statement, it can be some

decisions that occur in the software in the program, it can be some paths control flow in

the program and so on. So, the program element is a generic term we have used and

based on what we consider as program element? We will have different strategies of

coverage based testing.

We can also have fault based testing here we design test cases to expose some category

of faults. We observe the program and if we find that there are arithmetic operators let us

say plus and so on. We can using fault based testing, we can check whether the there are

any problems with respect to the plus operator becoming some other operator are those

getting tested. So, in coverage based testing we will try to design test cases to cover

certain program element and program element can be a statement it can be a decision can

be a control flow and so on.

Whereas, a fault-based testing we observe the code and identify what are the ways in

which faults can occur? The faults may get occur introduced, because an arithmetic

operation was not done correctly, it may be because a variable type was not correct

maybe that some statement was missed; so the faults here at the typical faults that a

programmer makes writing the program. And here in fault based testing we check

whether the test cases are able to expose these specific types of faults that the

programmer might commit.

(Refer Slide Time: 14:46)

Now, first let us look at the coverage based testing. We will discuss statement coverage,

branch coverage, path coverage condition coverage, MC DC coverage and also data flow

coverage. So, these are the different coverage based testing techniques that we will

discuss. And, we will also discuss a fault based testing which is called as the mutation

test.

So, these are all coverage based testing, data flow testing, statement, branch, path,

condition, MC DC etcetera. We will discuss each of this testing technique and also we

will discuss one fault based testing called as mutation testing.

(Refer Slide Time: 15:35)

But, before we discuss about the white box testing the coverage based testing techniques

a fault base testing and so on. Let us be clear about one is so, that if we are doing black

box testing, do we need to do white box testing or if we are doing white box testing is it

necessary to do black box testing.

 If, we want to answer that ok, we need both this testing. Then we should be able to give

an example, that what cannot be detected by black box testing will be detected by white

box testing? And also an example of what cannot be detected by white box testing, but

will be detected by black box testing? That will justify our claim that we need to do both

the testing; if, we cannot even give one example of a bug, which can only be detected by

white box testing not by black box testing.

And, similarly some category of bugs, which can only be detected by the black box

testing and not the white box testing, then we would have somehow justified that we

need both. But, if we can give no example that, which can be detected by only black box

or only white box then we will not be justifying why we need both testing? We might as

well do just one case testing.

So, let us based on that motivation, let us discuss the difference between black box and

white box and why we need both? One of the main shortcoming of the black box is that

that, we cannot do exhaustive testing black box testing. And, also even if we do a

thorough testing based on the techniques that we discussed, we cannot guarantee that all

code parts have been executed. It may be possible that the programmer who has written

the code? He has a written some extra code which is a Trojan.

Only the programmer knows, we tested according to the test cases designed based on the

input output behavior that is specified, but the Trojan will not get exposed. Because the

programmer has written a secret key, only when that key is pressed the Trojan gets

activated. It is very difficult to discover Trojans by only black box testing, we need to

examine the code and see whether all parts of the code are thoroughly been tested.

So, this is the justification, why we need to do white box testing? Because, if the

programmer has written some extra functionality not there in the specification, we cannot

detect that using black box testing, because it is not listed in the specification and we

cannot design test cases for that. But, let us see why we need to do black box testing.

One problem with white box testing is that we have been given the code and we design

test cases exactly based on the code, but then just by examining the code we design test

cases, but we can find whether all the code is executed and so on. But, we cannot tell if

all functionality has been implemented, this is there in the requirement specification.

If the programmer has forgotten to write the code for some program logic, we cannot

detect that using only white box testing, because the code itself is absent, unless we

check the black box specification and see design test cases for every function, we cannot

check whether some functionality has been omitted by the programmer.

So, that gives us the justification, why we need both black box and white box testing?

Using just black box testing, we cannot know whether Trojans have been implemented or

the programmer has added some extra functionality. Whereas, using white box testing we

cannot know whether there is a missing functionality, the programmer has forgotten to

write code for some specific functionality.

(Refer Slide Time: 21:14)

Now, we said that the white box testing mainly the coverage based testing techniques and

the fault based testing techniques. In the coverage based testing techniques, we said that

when we check whether the designed test cases, execute some program elements. For

example, whether all the statements are getting executed, we call it as statement

coverage. All the paths in the program are executed that, we call as path coverage. So,

here we cover or execute all the program elements that we consider.

In fault based testing, we focus on discovering certain types of faults. That is whether, if

the programmer has done a mistake, in writing the logical expressions are the test cases

thorough enough to design all errors in logical expressions and so on. One prominent

example of fault based testing is the mutation testing.

(Refer Slide Time: 22:26)

And, we said that in the coverage based testing the type of coverage is defined based on

the type of the program element. And, we will consider statement based coverage, branch

coverage, condition coverage, multiple condition coverage, path coverage, and

dependency coverage.

Thank you.

