
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 43
Basic concepts in Testing-I

Welcome to this lecture. In the last lecture, we started looking at the testing issues. We

are trying to identify some very Basics issues in Testing. And, we had said that, when

testing we observe the failures. We do not observe the bugs; we just observe a

manifestation of the bug that is failure. And, we are trying to understand the terms error

fault and failures failure is caused by faults.

(Refer Slide Time: 00:57)

And, we are saying that initially errors and faults bear synonyms, but then letter the IEEE

standard said that there is a difference between error and faults, because that will help us

to express the ideas better. The faults or bugs these are caused by mistakes or errors on

the part of the programmer. And, these create faults bugs or defects and this in turn may

cause failures.

(Refer Slide Time: 01:41)

So, I represented that in this diagram, the programmer here manually does many activity,

does specification, design, code, and the programmer can commit mistakes or errors, can

commit many mistakes or errors during specification design code, but not all mistakes

become faults or defects. For example, let say the programmer was writing a code i less

than 50 and by mistake or the error wrote i less than 500, but then in the program there is

no way that I can get a value more than 50. And therefore, even though he made a

mistake or a error this does not become a fault or a bug.

So, only some of the errors they become faults or defects or bugs, but then some all the

bugs, they do not result in failures. May be the test data that is normally given they do

not cause this bugs to express and some of the bugs they cause failures. So, can say that,

the mistakes or the errors on the part of the programmer, some of them they cause bugs

or faults and some of the faults, they cause failures.

(Refer Slide Time: 03:59)

Now, let us look at some facts about errors. Even the most experienced programmers

they do mistakes or errors. And, a typical industry average is 50 bugs per 1000 lines of

source code is what good programmers make. And, testing reduces the number of bugs,

after thorough testing about a 1 bug per 1000 lines of source code still remain. Even, if

we have tested a program very well, still there may be 1 bug for thousand lines of source

code, but what are the origin of all these different bugs 60 percent can be trace to

specification and design and about 40 percent from code is the average figure ok.

(Refer Slide Time: 05:07)

This is just a lighter moment a cartoon, but then that holds a message here this is a

Dilbert cartoon by from Dilbert dot com. So, this is a engineer he is Dilbert he is giving a

presentation says I found the root cause of our problems says, it is a people. They may

mistakes; they are buggy and just see here the manager says did you bring a pen. So, he

has already forgotten to bring a pen. So, he is made a mistake. So, people forget and they

make mistakes, even very experienced people they do mistakes and that is the reason

why there are bugs in the code?

(Refer Slide Time: 06:14)

Assuming that the best programmers make mistakes and there lead to bugs the code, how

do we reduce bugs? Because finally, we have to give a good software to the customers,

there are many techniques to reduce bugs one is to do review. Can do a specification

review, design review, code review, and that is a very effective way to reduce the bugs.

Testing, that say widely practices and acknowledged to be a good technique to reduce

bugs. Formal specification and verification this not used for all the part of the code these

are expensive difficult to use cannot handle large programs and so on. And therefore,

their use is be testified use of a proper development process, this a defensive mechanism,

it reduces the number of bugs. In this lecture today’s lecture we will look at the testing

concentrate on testing.

(Refer Slide Time: 07:40)

The first question that, need to ask is that how do you test a program? Somebody may

even ask you this question that how do you test the program? We test a program by

giving some inputs to it called as the test inputs. And, then observe the output and see if

the output matches our expectation, bit matches we said at that test cases passed, but has

failed we note down for which data it failed and under what conditions?

So, input data to the program observe the output and check if the program behaved as

expected give inputs to the system, observe the output and see if it is exactly is per our

expectation. It is exactly is per our expectation, then that is passed, but there is a

discrepancy there is a failure. And, we note down the conditions that is what input we

gave under what conditions?

(Refer Slide Time: 08:50)

If, the program does not behave as expected, we note the conditions under which it failed

and this we call as the test report. And, this test report based on the test report debugging

done to identify the exact faults or the bugs and then these are corrected.

(Refer Slide Time: 09:17)

For a typical program in a industry scenario, testing consumes the largest effort among

all development phases. And, it also has the largest manpower. So, if you walk into any

organisation you will find that there are more number of testers, than there are designers

or coders or those who does specification the analysts.

Since, the industry needs a large number of testers implies more job opportunity. Typical

estimate is about 50 percent of the development effort is spent on testing. Because

finally, we need to give customer a very reliable software, if we deliver a software which

is buggy, the company will get a bad name and the company cannot progress.

So, most companies are careful about testing they spend about 50 percent of the

development effort in testing, but then testing is done towards the end of the

development life cycle. And only 10 percent of the development time is typically taken

to carry out the testing, but how does 50 percent of the development effort spent in 10

percent of the development time. The answer is that there is lot of parallelism in testing,

many testers can carry out the work the same time, different parts, different test, they can

execute different test cases and so on.

And therefore, using a large manpower the testing time is reduced, but there is less

parallelism in specification or design, because their work is dependent on each other

cannot really parallelly deploy 100 designers or 100 analysts doing the specification.

(Refer Slide Time: 12:01)

Over the years testing is getting complex and sophisticated. The reasons are that the

programs themselves are becoming larger and more complex, newer programming

paradigms, test automation, there is sophistication you must know how to use the test

tools? And, also newer testing techniques many new testing techniques have been

developed recently and testers must know these testing techniques.

(Refer Slide Time: 12:43)

But, those who do not know this they think that testing is not challenging, but over the

years testing has taken a centre stage, and it has become much more challenging than

even coding or designing or specification. The reason why these perceptions exist is that

in the early years of testing, testing was done by inputting random test values, which is

called as monkey testing.

Because of the large number of testing techniques and test related innovations tools

etcetera that have come in to picture, monkey testing is no more used. And, the testers

have their own domain knowledge and not everybody can do the testing. And also they

must be convergent with the test tools.

(Refer Slide Time: 13:51)

In the initially you are sub testing used to be called as monkey testing. Basically give

input data and observe it anything happens. And, there were 2 types of monkeys; initially

the dumb monkeys. The dumb monkeys they understood very little and just kept on

typing giving data. Whereas, the smart monkeys they knew that how the software works?

What are the menu choices? What it is menu choice needs to do? They can execute

specific scenarios and so on. So, the dumb monkeys could only crash the system, that is

the only thing that they can notice whereas, the smart monkey knows what data is

expected and so on.

And therefore, is a much more effective tester, but then both the monkeys they give

random inputs. The problem with monkey testing is that if random data many parts of the

program do not get tested, the risky areas of the programmer not tested well, because

they just given random input and not identified the risky areas and tried to test those.

And, also the worst thing is that many times they just say that the program failed, but

they cannot identify why, what have they been doing? They cannot reproduce the failure.

(Refer Slide Time: 15:43)

This is another basic concept that nowadays the testing effort is spread over the entire

lifetime.

(Refer Slide Time: 15:48)

In the water fall model the testing was done towards the end of the life cycle, but now it

is spread over the entire lifecycle. Define and conduct unit testing, define and conduct

integrate testing, use ability testing, user acceptance testing and so on. But, another basic

issue that we must understand before we look at the test methodology then so on is test

how long? Started to test as we test more and more find some failures and So on, but

then when do we know when to stop testing that is the stopping criterion.

One way is that as the failure reduces, we test let say we say that we test for 2 days and if

we do not find a failure we will stop there. So, that is one way. The other way is that, the

manager can seed some bugs and then as the testing proceeds, you will identify whether

all those seeded bugs have been found out. For all those bugs have been found out and

we will say that possibly the other bugs could have been also been found out and that the

time to stop testing.

(Refer Slide Time: 17:26)

This is the, another very basic concept is verification versus validation. Verification is the

process of determining, whether the output of one phase conforms to the previous phase.

Whereas, validation is the process of determining, whether a fully developed system

conforms to it is SRS document.

(Refer Slide Time: 17:51)

The verification is done after every phase just to check, whether it conforms to the

previous phase. We can think of verification as the technique for phase containment of

errors. Whereas, validation is for the fully developed software, we check if the final

product is error free.

(Refer Slide Time: 18:17)

What are some of the verification techniques? These are review, simulation, unit testing,

and integration testing. Just observe here, that unit testing and integration testing are

verification techniques, because these are not done on the fully developed system. The

system testing is done fully on the fully developed system. And therefore, the system

testing is a validation technique whereas; unit and integration testing are verification

technique.

(Refer Slide Time: 18:54)

We can make further distinction between verification and validation, verification we

check whether we are building the system right that is not committing any errors try to

detect the errors as quickly as possible. Whereas, validation we check that after the final

thing we have built, whether we have build the correct thing. Here in verification we

check the artefacts that are developed after a faith if it conforms to the previous artefact.

Whereas, validation checks the final product against the specification the verification

activities are done by the developers. Whereas, the validation by the testers. Verification

can be static or dynamic activity in static activity you do not need to execute the

program. For example, review is a static activity or we might have to actually run the

program and that is a dynamic activity unit testing is a dynamic activity. Whereas,

validation is always a dynamic activity, we execute the software and check against the

requirements.

(Refer Slide Time: 20:21)

Now, let us look at the testing levels. Software is tested at 4 levels; unit testing,

integration testing, system testing and regression testing. Unit testing each unit is tested,

that is each module or function, integration testing a set of modules is integrated and

tested the system testing all the modules after integration that is complete system is ready

tested. In regression testing is done during maintenance any bugs that are fixed need to

do the regression testing.

(Refer Slide Time: 21:05)

Unit testing each module unit that is a function or component is independently tested,

mostly done by the developers of the module. Whereas, integration and system testing

are done by the testing or a quality assurance team and acceptance testing is a validation

testing done by the customer.

(Refer Slide Time: 21:38)

From this diagram, you can see here that on the development side, we find what the user

needs, get the requirement, then design and code finally, maintenance and the testing

side, unit testing on the code, integration testing at the design and system testing on

based on the requirements and regression testing for the maintenance work.

(Refer Slide Time: 22:14)

If, we look at the testing activities that are done during testing; one is test suite design

running test cases checking results to detect failures. And to prepare the failure list or the

test report is done by the tester whereas, the developer debugs and correct the error.

(Refer Slide Time: 22:43)

Now, let us have a few quiz as testing proceeds more and more bugs are discovered. So,

how do we know when to stop testing? This well said there are 2 techniques; one is to

check that few days of testing does not discover any new failures. And the second is by

seeding bugs.

Give examples of the types of bugs detected during unit testing, integration testing, and

system testing. In unit testing, we can identify the bugs in a unit for example, logical

errors. Integration testing, we identify the bugs that are at the interface of 2 modules. So,

here we identify the interface bugs, system testing here we identify bugs for example,

performance related bugs, which are not identified during unit or integration testing.

(Refer Slide Time: 24:00)

Now, let us first look at the unit testing. Here the units are tested in isolation, the units

can be functions or modules, but the question is that why not test all the modules

together? Why do unit testing? The reason is that if we do not do unit testing, it would be

difficult to determine which module has the error in unit testing we are testing only a

small unit and we know that the bug is there we quickly debug and correct. But if we do

not do unit testing for each bug we have to trace out which unit has the problem and

debug it that correct it.

(Refer Slide Time: 24:53)

So, it becomes much more expensive, if we do not do unit testing. In integration testing

we integrate few modules together and then check their interfaces, if there are any

problems.

(Refer Slide Time: 25:05)

In integration testing, we integrate a group of functions or classes and then find it their

compatible, if there are unexpected parameter values. On the other hand system testing

we look at the entire system, there is another term here smoke test. Before, we start to do

a test normally do a smoke test, just imagine that a plumber has put a pipeline. And

before he actually puts real water in that and tests we would like to see there are any

leakage. And, they do a smoke test see if there are leakage they put smoke, similar thing

here in software in smoke test we just check if some basic functionalities are working

and it does become test worthy. We have looked at some very basic concepts in testing

we are at the end of this lecture we will stop here and continue in the next lecture.

Thank you.

