
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 37
Interation Modelling

Welcome to this lecture. In the last lecture we looked at the Class diagram. We looked at

the Class relations. There are 4 types of relations that can exist among classes and also

we looked at how to identify the classes from a problem description and also to identify

relations and to represent then in a, them in a diagram. But, we mentioned that even

though it appears very simple to identify the classes just by reading a statement and also

to identify the relationships, but lot of practice is needed.

(Refer Slide Time: 01:06)

In the last lecture towards the end, we had done some practice on identifying class

relations. Today, let us start with some more practice, let us I will display a simple

statement. We need to identify the classes and also the relationship that exist between

them and if are able to identify we can represent them in a class diagram ok. Let us get

started. The first one is a square is a polygon.

So, what are the classes here and what relationships exist between these two classes. This

is rather straight forward. The two classes are square and polygon and there exists a

generalization, specialization relationship; it is a either relationship we can see the is a

phrase there which quickly identifies the type of relationship between square and

polygon.

But the question is which would be the base class and which is the derived class? In

square derived from polygon or polygon derived from square. So, here the polygon is the

base class and square is a special type of polygon. So, the inheritance relationship

between polygon and square; polygon is the base class and square is the derived class.

The next one is Shyam is a student. Please identify the class and relations. If you look at

this statement student is a class and Shyam is a object; it is not really a class just an

instance of a student. So, Shyam is an instance of the student class. Every student has a

name. So, what are the classes here; student is a class and name is a attribute of the

student class.

100 paisa is one rupee; here, the 2 classes are rupee and paisa and there is a composition

relationship. One rupee is a composite class and it consists of 100 paisa. But then, we

need to be careful that this not an aggregation relationship; it is actually a composition

relation because a rupee consists of 100 paisa, we cannot make it 99 paisa or 101 paisa.

So, then paisa in 1 rupee is fixed and therefore, this is a composition relation and we all

know how to represent the composition relationship. Please draw the diagram even

though I am not drawing here; please look up the syntax and please draw the diagram

rupee is 100 paisa.

Students live in hostels. So, here the 2 classes are student and hostel. We need to use the

singular form; the class name is not students, the class name is student and the other class

is hostel and there is a association relation between student and hostel. But then, what

about the multiplicity of the relation? A student lives in one hostel and a hostel can have

many students. How do I represent that in a class diagram? Let me just draw this one.

Student and hostel; there is a association relation and the student is the reading direction,

student lives in hostel.

But then, we have to give the multiplicity and for that we need to identify one object of

one of the class is associated with how many object of the other class and vice versa. So,

a student lives in one hostel. So, we can write here 1; but if you do not write 1, by default

it is 1. So, to be safe we can write 1; but if you do not write that still because by default it

is 1. But if you read it the other way, a hostel in a hostel many students live. So, this will

be star. So, the correct class relations is association relation between student and hostel

and we should get this kind of relation.

(Refer Slide Time: 07:55)

Now, let us look at the next one. Every student is a member of the library. So, here

library aggregates all students is aggregation relationship because every student is a

member of the library and we know that aggregation is a special type of association and

if you write this is an association relationship still it is acceptable, but then, we have to

give the multiplicity the association name reading direction etcetera correctly.

Next one, student can renew his borrowed books. Here there are 3 classes; student, book

ok; there are 2 classes, student and book. Student can renew his borrowed books and we

can draw an association relationships. So, this implies the student can renew. So, there is

a association relationship between two classes student and book there are two classes

here.

Now, let us look at the next one. The department has many students the 2 classes are

department and student. But, we can debate whether it is an aggregation or a composition

relation, to resolve this let us see that whether the department when it is created at the

students fixed there.

Because the implication of the composition relation is that when the whole is created the

parts are also created and when the whole is destroyed the part is also destroyed; the

parts cannot be added or deleted. But then, to the department students come and go;

students may leave the department, graduate or otherwise they may leave the department,

new students join.

So, the department and student is a aggregation relationship department is the composite

class and student is the component and department has many students and that is

aggregation relationship, please draw the aggregation relationship between department

and student.

(Refer Slide Time: 11:19)

Now, let us look at few more exercises. Some more exercises because as I said that we

need some practice to identify the classes and the relations. The first one here a country

has a capital. The country has, a country has a capital city; the two classes are country

and capital city and what is the type of relation the giveaway here is the has a relation

and we know that has a implies aggregation or composition and since the country has a

fixed capital city. Normally, we can make it a composite relation, country has a capital

city; it is a composite relation.

But then, we may consider that even the capital city can change and in that case if that is

allowed then, we can make it a aggregation relationship; has a is typically and

aggregation relationship even though it is just one instance. Aggregation is normally

many components, but here there is only one, but because of the has a, we can represent

it is an aggregation relation.

A dining philosopher uses a fork. So, the 2 classes are philosopher the dining philosopher

and uses a fork. So, the dining philosopher is a derived class of the philosopher, if you

think so otherwise, we can just write the philosopher is the class and use as a fork. So,

there is a association relation between the 2 classes fork and philosopher and the

association relationship is uses.

A file is an ordinary file or a directory file. So, the giveaway here is the is a relation. A

file is the base class and ordinary file and directory file are the derived classes. So, there

are 3 classes here; file, ordinary file and directory file. So, we can draw here file is the

base class and ordinary file and the derive file sorry directory file, these are the 2 derive

classes. Now, let us look at the next one. A file contains many records; contain is the

giveaway here.

(Refer Slide Time: 14:41)

So, there is a aggregation relationship between file and record; file contains many

records. Now, let us look at the next one. A class can have several attributes. Attribute is

normally not a class because you do not have methods or operations and private data,

public data etcetera associated with attribute just one value maybe. So, this is a several

attribute, it is not really a class attribute.

So, there is class and attribute is part of it. Relation can be association are generalization.

So, this is again a generalization, specialization relationship or inheritance relationship.

Relation is a base class; association and generalization are the derived classes.

Now let us look at this. A polygon is composed of an ordered set of points. Here, the

giveaway is the composed of and this phrase indicates that a polygon permanently

contains set of points; you cannot just delete some point here, add some point here.

When a polygon is created, a number of points in that is fixed and therefore, a polygon is

a composite class of many points.

Now, let us look at the last one. A person uses as a computer language on a project. There

are 3 classes here; person, computer language and project. But then, what about the

relation between this? Person use as a computer language is an association and again

language is used in a project. So, that is again and association, the 3 classes a person,

computer language and project and where association relationship between the person

and computer language and computer language and project.

(Refer Slide Time: 17:34)

Now, let us just recaptured what we discussed in the class diagrams. The class diagrams

describe the static structure of the system. Unlike the object diagrams where which is

dynamic because as you said that the objects may created, deleted, link establish

destroyed and so on.

But the class is the static structure of a system; association, relation, aggregation etcetera;

they are permanent between classes. And therefore, we say that it is a static structure of a

system.

The main constituents of the class relation, the different types of class relations are

generalization, aggregation, association, dependency, composition.

(Refer Slide Time: 18:29)

And we had seen the notations for that and Association typically appears as a has a

clause in statement and then, it can be represented by here a simple line or an arrow;

Aggregation relationship a diamond with an arrow. A dotted line with this kind of

arrowhead for a Dependency; Generalization is an arrow with this kind of depends is a

line having an arrow with this kind of symbol and then, Implements again here it similar

to a generalization inheritance relation; but here it is a dotted arrow.

(Refer Slide Time: 19:25)

The object diagram just like a class diagram, they can either appear with the name of the

object or some attributes of the object or the methods that are available attributes. And

here, it is a rectangle with rounded edges. So, far we have looked at the use case

diagram, the class diagram and object diagram is simple within spend too much time.

Now, let us look at some behavioral view of a system and will look at the interaction

diagram.

(Refer Slide Time: 20:16)

The interaction diagrams, they can model the way that objects interact during the run of

the system to realize some behavior; but then, what can be a behavior of a system? The

behavior is when we execute it done something for us for example, issue book return

book. So, that is a behavior of the system and if we think of it the behavior is either

execution of a use case or part of a use case.

So, we model here using interaction diagram that when I use case executes what are the

objects that take part and what messages the interchange among each other. But the

question here is that when a model a system, how many diagrams to draw; how many

interaction diagrams? The answer is simple we draw as many use cases are there because

each interaction diagram captures the behavior of a single use case and therefore, the

number of interaction diagram is typically equal to the number of use cases. But of

course, if the use case is very complex, we might split into multiple interaction diagrams;

but if you have designed well, then we might have decomposed the use cases so that

none of the use cases is very complex.

So, therefore, the number of interaction diagram should be equal to the number of use

cases identified and we must remember so very important statement here that we need to

develop one interaction diagram for every use case. We will see that interaction diagram

either a sequence diagram or collaboration diagram and we need to draw one sequence

diagram for you each use case.

(Refer Slide Time: 22:46)

The interaction diagrams the capture how the objects interact during the run of the

software to realize some behavior; for example, use case execution and here we need to

identify what are the objects that are interacting during the execution of the use case and

what is the messages there exchanging among each other and the time ordering of the

messages.

And we will see that we will have ways to represent some control information like

whether there is sequential flow from one object to another object, the control just flows

from one object to another object. There is a branching that is depending on some

condition there; control flow occurs from one object to another object or some other

object. Iteration multiple times control passes from one object to other object and returns,

recursion, concurrency and so on.

(Refer Slide Time: 24:12)

But we must remember that for every use case, we need to develop one sequence

diagram. Sequence diagram is one type of the interaction diagram. There are actually 2

types of diagrams; the sequence diagram and the collaboration diagram. If this is our use

case model; then, we need to develop one sequence diagram for each of these use cases.

You can take any one use case and draw the sequence diagram for this, the sequence

diagram will look something like this that what are the objects that participate during

execution of the use case and what kind of messages they exchange and the time

ordering of those messages. So, here this diagram at the top, we mention the objects that

interact. Even though, it looks like a class symbol, but then just look here we have

underlined here library member is a class name and member is the object when we

underline that.

This one is a instance of the book class, small book is a instance of the book class and

then, here just here in this we have not even mentioned what is the name of the object

and that is because it is an anonymous object; any book copy here. And the diagram is

typically read from top to the bottom. This we call as the timeline and this arrow is here

capture the sequence in which the messages are exchanged between various objects of

these classes as the interaction between them occurs during the execution of the specific

use case.

So, to start with, the user issues a borrow book request and he needs a specific type that

is book as given as the argument here and then, this is a self method here and checks

whether the member is eligible to borrow book; has not exhausted his limits, number of

books that he can issue etcetera. And just see here there is a recursion here because the

same one calling here and then, this small rectangle here is a indication that the object is

active now it is executing its code.

And then, it depending on whether he can borrow the book that we write here in the form

of this control statement that ok with the condition is true then invoke the borrow

member. So, the book class the specific book, I mentioned here that this is a book here

and then, the book for the book class the method borrow is activated and the member

class waits here for the result to return and that is how we are not really stop this

rectangle here it continues.

And once it comes to the book, the control comes to the book it gets active and then if

the book has many copies and the specific copy that would be issued any one of the

copies the member who is the issuing it, it is the registered there.

So, that next time query we query that who has taken the book copy, then you can find

that the member has taken the specific member who was requesting has taken the book.

So, this is the essence of a sequence diagram. Basically I will identify what are the

objects and for execution of a use case in what way they interact; which messages the

exchange and in what time model. We are at the end of this lecture stop here and

continue in the next lecture.

Thank you.

