
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 36
Aggregation / Composition and Dependency Relations

Welcome to this lecture in the last lecture we were looking at the association relationship

between classes. And we saw that the association relationship can imply lot of

information between the types of association between two classes.

(Refer Slide Time: 00:44)

The types of relation that so far we have discussed between 2 classes; we will look at the

relationship they can be generalization specialization association or dependency. And the

association can be a binary association or N-ary association and a special type of binary

association is aggregation and composition is a special type of aggregation.

So, please observe that we are saying aggregation is a special type of association; it is a

association with some extra characteristics. Soon, we will see what we mean by

aggregation and why we consider it to be an association relationship with some extra

characteristics. And similarly what exactly is composition relationship and why we

consider the composition relationship to be an aggregation with some extra

characteristics.

(Refer Slide Time: 01:42)

But before we look at the aggregation relationship in the composition; one thing we must

mention here is that overdoing an association, unnecessarily complicates an design. For

example, we might create a fancy diagram like this that a person is associated with

person information, but actually this information are the attributes of the person. It would

have been much better if you had written person information and then sorry a person and

person has an; the attributes are name, address, email and birthday.

(Refer Slide Time: 02:44)

Now, let us look at the aggregation relationship between 2 classes; the aggregation

relationship indicates a whole part relationship represented by a diamond symbol. And

the aggregate class creates many components and it is also true that aggregate class; in

books the same operations of all the components.

We will see what we mean by this and this is in contrast to plane association where a

class does not invoke the; the same operation of all the classes to which it is associated

and the aggregate classes typically the owner of the components.

(Refer Slide Time: 03:38)

Let us look at some aggregation relationship and then we will see what we meant by

saying that an aggregate class is a owner of the component classes, it creates the

component classes. And it usually applies the same operation to all its component

classes; this is an example of aggregate relationship the document consists of many

paragraphs.

So, the document class creates the paragraphs and a paragraph is the aggregate of many

lines, the paragraph creates the lines. And if we need to let us a search some word in a

document; the document will apply the search operation to all the paragraphs and

similarly the search operation each paragraph will apply to all the lines. So, that is what

we meant by saying that the same operation is applied to all the components of an

aggregate class.

This is another example of aggregate class and this is an example of a association; let us

say a company employs many persons. If a company is a aggregate of persons, then it is

typically the case that the company creates the persons, applies the same operation on all

the persons; for example, print salary etcetera. Whereas a person is a member of 0 to 1

club. This association relationship and a club has many members, many persons as its

member. This association relationship in the club does not create the person where is

here the company creates the person.

(Refer Slide Time: 05:58)

The aggregation is typically a tree hierarchy and no circular aggregate relation is

possible; like a paragraph contains many lines, but at the same time a line cannot contain

many paragraphs, this is a wrong aggregation relationship; it will have no

implementation.

(Refer Slide Time: 06:25)

How does aggregation and inheritance compare? There are some similarities and

dissimilarities; using the inheritance relationship we create many objects that have

similar features. And the necessary semantics for similarity in behavior is in place

because they all inherit the attributes and operations of the base class.

So, there is similarity of all the objects that are created by inheritance; on the other hand

the aggregation is a containment relationship; it only helps to create complex objects, but

these objects might have different characteristics.

(Refer Slide Time: 07:18)

A special case of aggregation relationship is composition represented by field diamonds;

it is a stronger form of aggregation and here this is the sole owner of this point; circle

contains 1 point and a polygon contains 3 or more points.

So, you can represent a circle having 1 point; so, the circle class circle object is sole

owner of a point. When the circle is created along with at the point object is also created

in the circle is destroyed; the corresponding point object is destroyed. Similarly when a

polygon is created 3 or more point objects are created is part of the polygon and when

the polygon is destroyed, the point objects are also destroyed.

So, here in composition the composite class manages the creation and destruction of its

parts. This is unlike the aggregation relationship where the aggregate relationship the

aggregate class may create the component classes, but it does not destroy them; so, their

life lines are different.

(Refer Slide Time: 09:05)

Let us just explain the difference between a composite relationship; a composition

relation and aggregation relation with help of some examples. In this example, an order

contains many items and when the order is created the items in it are created. And when

the order is destroyed those items are destroyed, but we cannot change an item inside an

order. For example, we create an order by entering the necessary data; let us say we have

1 TV, 1 laptop and 2 speakers; the order is created, but now we cannot.

So, this are if it is a composite class; composition class it contains 1 TV object, 1 laptop

object, 2 speaker object, but we cannot really changed it to 3 speaker objects; what you

can do is you can delete this and you can create a new order class. But we cannot change

the parts of it once it is created; the order during creation, the items are specified and the

items are created along with the order. And the items are destroyed with the order there is

no change possible to the order and the items in the order in between.

(Refer Slide Time: 11:04)

Your may also supports and alternate notation we can write the corresponding classes

here inside the composite class and we can write the multiplicity of this. For example, a

car contains 4 wheels, 1 engine, 2 doors, chassis, 1 axle and 1 steering wheel.

(Refer Slide Time: 11:32)

In the composition relationship and object may be part of only one composite at a time

and the composite is responsible for creation and destruction of it part. For example, and

window can have many frames; the window creates the frames during the creation of the

window. And once the window is created no further frame alterations creation are

relation is possible, but when the window is deleted; the frames also get deleted.

(Refer Slide Time: 12:12)

Just to explain the difference between aggregation and composition is just explained with

the help of one example. Let us say you went to a restaurant and you ordered some menu

items. And if you say that see we forgot about the soup; please order the soup here and

the waiter says yes I will order the soup. But if the waiter says that see your order is

already entered you can do anything about it; you can only think you can do is you can

delete that order and place a fresh order and that case it is the composition.

In aggregation, you can add new menu items in the order, delete some menu items and so

on; whereas in composition once the order is created, the menu items are created with

that and their lifetime is the same. You cannot change any items in between either you

can delete the order and place a fresh order.

(Refer Slide Time: 13:32)

With respect to the representation; both are represented using diamond symbol, in case of

composition it is filled diamond and in case of an aggregation design empty diamond.

(Refer Slide Time: 13:48)

But how is the composition relationship implemented? Let us say a car contains 4

wheels; when the car is created the 4 wheels must be created. So, can have public class

car just 4 wheels and in the constructor of the car; we can a create 4 wheels. So, when the

car is created the 4 wheels are created, cannot have a car with 3 wheels. So, as long as

the car adjust the wheel exists and when the car is destroyed the wheels get destroyed.

(Refer Slide Time: 14:28)

So, far we have been concentrating on the syntax; how to represent? What is the meaning

of the symbol and so on. But now we come to the problem of given a description; how

do we identify aggregation composition relationship? If we find that the lifetime of the

composite is the same as the parts, then that is a composition relationship.

There must be an obvious whole part relationship and some properties of the composite

propagate to the parts; then it is either and aggregation are location sorry either and

aggregation or composition. For example, let us say we have a car is an aggregate of its

parts engine, chassis etcetera.

So, when the car moves the parts also move; when an operation is applied to the

composite; it is propagated to the parts. For example, if you destroy the composite the

parts also get destroyed, we move the composite let us say we have a polygon sorry; we

have a polygon, here the polygon contains many point objects. And if we move the

polygon by distance x then each of the component objects also move the distance x. So,

the operation is applied on the composite object is applied to each of the component

objects.

(Refer Slide Time: 16:50)

Now, let us see the last type of dependency the fourth type of dependency sorry fourth

type of relation which is the dependency relation; represented using a dotted arrow from

the dependent class to the independent class indicating that the dependent class is

dependent on the independent class.

(Refer Slide Time: 17:12)

There are many reasons why dependency can arise between classes; one is due to

abstraction. We have a concrete class which is dependent on the abstract class which

means that if anything changes on the abstract class, the concrete classes also get

affected the changes. Whereas abstract class is a independent class if you change the

concrete class the abstract class is not affected.

Similarly, is the bind binding if you have the template arguments to create the model

element from template. Let us say we have a stack class and we can have a integer stack

or we can have a floating point stack or we can have a stack of strings and so on. We can

bind the specific type inter, floater, string etcetera to the stack class and there is a

dependency and the template arguments.

Similarly the interface realization if there is a interface class and the client classes are

implemented implementation of the interface then if the interface changes then the client

classes need to change. So, there is a dependency of the client class and the interface

class; similarly the substitution a class can be used an object of a class can be used in

place of another object.

So, there is a dependency there are many reasons why the dependency can arise; maybe

there about a dozen reasons why dependency can arise and you have just listed few of

them here.

(Refer Slide Time: 19:24)

But each association is aggregation relationship in association; yes aggregation

relationship is an association because the aggregate class is associated with its

component class. It can invoke their methods, but what about a composite class is it an

aggregation relationship?

Yes, a composition is an aggregation relationship, but the only difference is that the

composite class and aggregates the component classes their lifetime is the same; the

composite class creates its components during its creation and also destroys the parts on

its destruction. Whereas an aggregate class some of the parts can be created later on and

they become part of the aggregate class or some of the items parts may be deleted.

(Refer Slide Time: 20:40)

The aggregation relationship is represented by an empty diamond where is the

composition by a filled diamond and the dependency by a dotted arrow.

(Refer Slide Time: 20:58)

So, this is the summary of the notations we have so far seen the generalization

relationship dependency association and this; the multiplicity we write down the

association and the name of the association and the association line aggregation

relationship composition relationship and here always we have 1 where is here it can be

1 to star.

(Refer Slide Time: 21:29)

Just to give an example a faculty can teach many courses, but a course may be dot by 1

to 5. So, that is a group teaching possible, but here it is always one the sales order

contains many sales order items once the sales order created along with the sales order

line items are created.

(Refer Slide Time: 22:01)

How do you identify the class relations given a description, how do you identify which is

composition which is the subclass; superclass generalization, specialization relationship

and which is an association relationship? If from the test desk description you can find B

is a permanent part of A. Or A contains B or we have A is a permanent collection of B;

then we say that; that is a composition relationship. If A is a kind of B or A is a

specialization of B or A behaves like B; we say that there is a subclass superclass

relationship or generalization specialization relationship B is the base class and A is the

derived class.

Similarly, if A delegate some responsibility to B; A needs help from B, A and B are peers

if the text contains this kind of terms then we know that A and B are association classes

sorry they have association relationship between them.

(Refer Slide Time: 23:13)

But how do we identify the classes from a text description? Because after all during the

design process we need to identify the classes that is an important statement design when

we look at the design methodology; we will see that identifying the classes from text

description is an important skill.

Here is a hint how to go about identifying the classes based on the text analysis;

grammar analysis you can do and identify the classes. A common noun implies a class

for example, book is a common noun, a proper noun implies an object for example, CSE

department, Object Oriented Software Design and so on. And adjective implies an

attribute for example, price of book; a doing verb implies an operation for example,

student issues a book.

So, issues is a operation; having implies an aggregation relationship, a descriptive verb

phrase indicates an operation for example, ISBN are integer; it elaborates an operation.

The descriptive verb elaborates an operation for example, ISBN operation numbers are

integers, an adverb implies an attributer operation for example, fast loading an image.

So, it says that; what are the characteristics of loading it identifies an adverb fast loading

identifies some characteristics of the operation and helps in implementing the operation.

(Refer Slide Time: 25:16)

Now, let us practice with few simple examples how to identify the class and relation?

What are the classes here? The first one the classes are faculty and student, but what is

the relation? The faculty teachers many a faculty teachers by teachers; many students a

student dot by many faculties.

Similarly what is the relation between hospital and a doctor? A hospital employees many

doctors; a doctor is employed by a hospital. A door and a car; a door is attached to one

car a car has 4 doors, a member and an organization a member belongs to one

organization; organization has many members people and student.

So, this is a inheritance relationship; these were association relations; this is a

aggregation relationship. A car has 4 doors this is aggregation; these are all association

relations, people and student this is a inheritance relation a student is a special type of

people, department and faculty this is the association relation. Employee and faculty this

is a inheritance relationship; a faculty is a special type of employee. Computer peripheral

and printer; this is also an inheritance relationship because a printer is a special type of

computer peripheral. Account and savings account this is also an inheritance relationship

because a savings account is a special type of account; we might have current account,

fixed deposit account and so, on.

So, given 2 classes we should be able to identify what is the relationship that exists

between them; whether it is an association, aggregation, composition ok. This is actually

door and car is a composition relationship because a door is permanently attached to a

car. So, we can write that as a composition relationship whereas hospital and doctor is an

association relationship because doctor may leave a hospital; new doctors may join.

Similarly, member and organization is an association relationship, department and

faculty is a association relationship. We need more practice to identify the relationship

between classes. We are almost at the end of this lecture.

We will stop here and continue in the next class. And we will give you some more

exercises to practice because after all; designing is a skill which is a learnt by lot of

practice. We will give some assignment. And, also in the next lecture we will give you

some quizzes so that you pick up the skill and identifying the classes and their

relationships.

Thank you.

