
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 27
DFD Model- More Examples

Welcome to this lecture over the last couple of lectures we were discussing about the

data flow diagrams. The data flow diagrams are popularly used to do the structured

analysis that is capturing all the functionalities of the system and then doing a top down

decomposition of the functionalities. We found that DFD is a elegant mechanism very

simple and it produces data flow model of a software, identifies various functions at

various levels and the interactions terms of the data exchange among those functions.

And that forms the background or the design document based on which further design

can be carried out. Structured analysis is as you were mentioning so popular not

restricted only to the design aspect, but also for many other problems including in

requirements analysis DFD’s are used. But let us find out are there any shortcomings of

the DFD and that will give us some idea about for what applications DFD’s are not

suitable and what needs to be done to the DFD’s to extend those to be applicable to those

areas. Now, let us look at the shortcomings of the DFD model.

(Refer Slide Time: 02:16)

The first difficulty is that here the functions are only identified by the names written on

the bubble. And therefore, can be very imprecise, just by looking at the label we have to

in firm infer about what all is involved in the function and therefore, many things will

remain ambiguous incomplete.

(Refer Slide Time: 02:50)

Just to give an example, let us say we have a bubble and the name of the bubble is find-

book-position. So, we have find the book position as a bubble, but then we can imagine

that the find-book-position given a books description it outputs where it is located in a

library, but that is a very rough idea a rough description of the problem. For example, it

does not know, it does not tell us that how do we describe the book position, how do we

give the input do we give the name of the book, do we give the author of the book and so

on. And also what would happen if the book is not there, what would this functionality

do.

We are given a book which is not present in the library and also what would happen if

given a book name and multiple entries in the library match same book title, but different

authors or maybe same author and in multiple books does it display all of them or does it

display one. So, those things are not clear and therefore, the DFD model the first glance

is imprecise.

(Refer Slide Time: 04:53)

Another major problem with the DFD representation is that, control for flow aspects are

not represented. For example, we have this DFD model now in what order does the

accept order take the data; does it take first customer history, then the item file, then the

customer file and then the order or first it gets the order and then the customer file and so

on. This is especially important in case of real time systems where the timing issues need

to be analyzed. For example, do these 2 bubbles they execute parallely or they executed

sequentially; if there are multiple bubbles that are connected this bubble.

Let us say we have another bubble connected here, let us say pending determined

pending order. So, would this execute first or would this execute first. So these aspects

these are the control aspects are not key not really represented here, we just write what

data flows here may be some data book name etcetera. So all are just data exchanges

among the different entities and the bubbles are captured.

And that is the reason why timing analysis using a data flow diagram is very difficult and

this diagram has been extended with control flow notations to indicate in what order the

processing takes place and that is for doing the timing analysis. But we will not discuss

about those aspects in this lecture series.

(Refer Slide Time: 07:17)

There are other problems also one of the problems is that we achieve a functional

decomposition at different levels of the DFD, but then there is no guideline about to what

depth the decomposition should be carried out. We have only mentioned through a very

load statement that the decomposition should be carried out until we reach a function

which is very simple. But then that is a vague statement, what is function is simple to one

person may not be the same for another person and therefore, different designers can

carry out decomposition to different levels.

Another problem is that for different designers they can come up with very different

DFD representation for the same problem and also many times we do not have any way

to tell which DFD representation is superior and therefore, we have to explore multiple

DFD representation ok.

(Refer Slide Time: 08:46)

We already seen that how to decompose, that is not clear we just say that see bubble

should be decomposed in the next level. Take 1 bubble from a layer level and then

decompose it.

But then we never said how to decompose it, we just said that look through the activities

that are to be carried out by that process or that bubble and then identify the sub activities

and those sub activities become the processes or bubbles in the next level. But then that

subjective because different designers may come up with different sub functions and they

will come up with different DFD representations.

(Refer Slide Time: 09:55)

But in any case DFD is a very useful technique very easily learnt and once you learn it

you will find, it comes to use not only in software design, but in many other areas. In

software development for example, in testing and so on and also in non software

development areas, there are many tools that are available using which you can develop

the DFD model it simplifies the task of developing the model and produces good

diagrams. There are several commercial tools which are popular for example video,

smartdraw which includes a 30 day free trial, edraw, creately, visual analyst and so on

and there are some free tools like dia which is the GNU open source tool.

Please use some of the tools we find that the tools are extremely easy to learn and based

on the concepts we discussed can just start using the tool. The download is very fast for

example, dia and typically we have pick and paste the different DFD symbols would be

there as many menu items. You can just pick them and paste wherever necessary and

draw the dataflow arrows between bubbles so and almost every tool they develop the

data dictionary as you develop the functional model.

(Refer Slide Time: 12:12)

But then like to give a simple caution that, the concepts are more important

understanding what does DFD model, how does it model, the hierarchy balancing and so

on. But if you ignore the basic concepts, but just spend time on the tool just trying to

master the tool without knowing the basic concepts it may be counterproductive. If you

are hoping that just by learning the tools well you will become a good designer then your

hope will be misplaced, because just to give an analogy.

That let us say you want to become a famous writer of a thriller stories and then let us

say you learn the word processing package very well that will not make you the writer of

thriller stories, a good writer of thriller stories what you need is how to write thriller

stories the storyline and so on. Just learning the word processing package is not does not

lead you or does not automatically make you a good story writer. In the same way just by

learning the structure analysis and structure design tool you do not become a good

designer you need to understand the concepts well and of course, you need to practice

with several problems and that will make you a good designer.

(Refer Slide Time: 14:09)

Now, once the data flow diagram model is complete, based on the model we develop the

design the high level design and we call the process as the structure design. The structure

design it takes the results of the structured analysis and it transforms this structured

analysis into a structure chart. So if this is our set of DFD’s the DFD model as you are

saying is consists of a set of data flow diagrams the root level, level 1, level 2 diagrams

and so on.

Through a structure design we transform the DFD model into a structure chart. So we

will see the methodology by which by analyzing the DFD model we will be able to come

up with a structure chart we will give some methodologies; that is the structure design

methodology using which you can transfer the data flow diagram into a structure chart.

And in the structure chart representation we will have the different modules of the

system, the module dependency which will be represented in the form of arrows and also

we will represent the different data items that are passed between the modules.

(Refer Slide Time: 16:16)

So, this is an example of a structure chart of a problem and we will have these are the

modules of our design and for each we will write a module in the code. It represents the

call relationship between 2 modules, so the root calls all these 3. We will also represent

the data flow that occurs between the different modules through a some notation we will

see, we will write the name of that at a d 1, d 2 and so on.

(Refer Slide Time: 17:10)

Now, let us see what are the elements of the structure chart, the structure chart identifies

the module structure and we can easily program the structure chart. It is actually the high

level design and in the next step based on the structure chart we do a detailed design

where for each module we identify the algorithms data structures and so on and that is

directly transferred to code.

So, here in the structure chart we only represent the module structure what are the

modules, what is the call relationship among the modules. So these are the modules the

different modules M 1, M 2, M 3 etcetera and the call relationship among modules and

the data exchanged among modules, but we do not represent in the structure chart. What

exactly happens in M 2 what is the procedure or the algorithms used in M 2 or M 3 that

we do in the detailed design, where we identify the algorithms the data structures that are

used and we develop a module specification for each module.

So, let me just repeat that part that the structure chart representation is called as the high

level representation, the high level design and based on the high level design we carry

out the detailed design, where for each module we develop a module specification which

contains the data structures that are to be used in the module and also the algorithms that

would be used in this module.

(Refer Slide Time: 19:36)

Now, let us see what are the basic building blocks of the structure chart of course, the

central part of a structure chart at the modules. The modules are rectangles and the name

of the module is written very simple that we draw a rectangle for each module and we

just write the name of the module on the rectangle.

(Refer Slide Time: 20:07)

The second element of a structure chart is the arrows the arrow represents the invocation

relation that is which module call switch module. And when there is a call from one

module to another module, then the control is passed from one module to the other. So if

root calls process order then the control is passed from root to the process order and then

once the process order completes the control is back with root and then it may call

handle indent and then the handle query.

But then this sequential aspect whether it will call first this one, next this one, third is the

handle query it is not really represented here. So this just says that they are called, but the

order is not indicated here, it may first call handle indent and then make all process order

and so on.

(Refer Slide Time: 21:22)

The third item or the third element is the data flow. So represented here the data flow

aspect we draw a arrow here on this invocation showing the direction of the data flow. So

what this represents is that the root calls the process order and the process order gives

back the order to the root, very simple notations.

(Refer Slide Time: 22:09)

Now, there is one more element in the drawing of the structure chart which is the library

module. It is a module actually so it is a rectangle, but then we just draw these 2 parallel

lines here and this indicates the ones that are made into a library some of the functions

are called frequently by other modules and to represent that these are the library

modules, we just draw them in this notation.

(Refer Slide Time: 22:53)

There are other few other notations for example selection, so you draw a diamond here,

we draw a diamond here and it indicates selection. So it will call one of the module

depending on some decision here.

(Refer Slide Time: 23:28)

One more element here is the repetition on the invocation arrow if we draw an arc

shaped arrow here that indicates that these modules are called many times; in a loop.

(Refer Slide Time: 23:52)

Now, the structure chart there will be only one module as the root and then there are

control relationship between two modules. If the module invokes the other module and

based on the methodology that we give and also any structure design methodology we

always come up with a structure like this. It is a tree like structure these are arranged in

levels, but then we do not have lower level module calling a higher level module we do

not have this kind of arrow here.

So, there is the control relationship from one module to the next level of module, but we

cannot have a module calling a higher level module this is an example of a bad design.

We had discussed while discussing about the good characteristics of design said that this

as the design has to be layered and higher layer module can call a lower layer module not

vice versa.

We will see how the design methodology that we discuss it will give us it will

automatically result in a layered representation or a layered design and there is no back

arrows in that. If you are by chance while applying any methodology you come up with

arrows which invoke the higher level modules mostly that is not a good design unless

there are some exceptional situation, it does not it indicates that it is a bad design and

you have to be careful.

(Refer Slide Time: 26:25)

The main reason why the lower level design modules should not call the higher level

modules is, because of the principle of abstraction. This we had also discussed earlier

that due to the principle of abstraction at any time we are concerned about only some

modules you do not have to get concerned about all the modules together and if our

module structure is a tree like diagram. If we look at these modules, bottom level

modules then we do not really are concerned about the upper layer modules, because the

results are produced solely by these modules based on some data that is passed here.

But just imagine that if we have a back arrow here, so this will violate the principle of

abstraction and lower level module is calling a higher level module. And therefore,

understanding these design will be difficult, because we when we try to understand this

one, we see that we need to understand the one that it calls and then we need to

understand the one that it calls and we will end up just going round and round and same

thing happens while debugging.

An error if there is a failure we are trying to debug and find where which module has the

error we see that we are looking at all modules round and round and we will have

difficulty in debugging and understanding and so on. And therefore, the layering of the

module it is an instance of the principle of abstraction and helps us to develop a design

which is easily understandable and we can easily debug that. We are almost end of this

lecture we will stop here and we will continue in the next lecture.

Thank you.

