
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 25
Developing DFD Model

Welcome to this lecture. In the last lecture we were discussing how to develop the DFD

model of any problem. We saw that developing the context diagram is extremely simple.

We just draw a circle, write the name of the system in it, identify the external users or the

external entities and see what type of data they produce they input to the system and

what type of data they consume. And that forms our context level diagram or the level 0

diagram and then for the level 1 diagram we just take up the SRS document and identify

the functional requirements. If there is anything between 3 to 5 functions then you

directly represent them on the DFD diagram level 1 diagram.

But if there are large number of functions in the SRS document very sophisticated

system then we need to group some of the functions in the higher-level functions. And

normally in a good SRS document that is already done that the functional requirement

consists of subsections and each subsection contains several functionalities. So, we can

represent those subsections in the level 1 diagram and then we identify the data flows

that occur among these functions.

And then we do the decomposition to develop the still higher-level diagrams that is more

detailed diagrams. And for decomposition we need to take one bubble at a time and then

see what are the sub functions and we need to decompose between 3 to 5 sub functions in

the next level diagram. And we were discussing that the; if there are two or few bubbles

in the next level then the decomposition does not achieve anything.

(Refer Slide Time: 02:38)

Let us say if there was one bubble in some diagram, some DFD and in the next DFD

again we give one bubble then there is no decomposition. And even if we decompose one

bubble into two bubble then that is also not very meaningful. Typically, we need to

decompose each bubble into 3,5 or up to 7 bubbles. So, we will not be decomposed into

too many bubbles because that will make difficult to understand. So, the hierarchical

nature will be lost and each level will become too much of details and it will become

difficult to understand.

(Refer Slide Time: 03:32)

So, at any level or any DFD diagram at any level we should have about 7 maximum

bubbles and that will be a good DFD diagram. It will be easy to understand, otherwise if

there are too many bubbles then the diagram would become difficult for somebody to

understand.

(Refer Slide Time: 04:01)

We then keep on decomposing each bubble take up one bubble in a diagram, decompose

and then again take up those known de decomposed diagram one bubble and go to

decompose it in the next level and so on. But to what extent we go on decomposing? We

stop our decomposition when we find that it is decomposed to a function, which can be

described using a very simple algorithm and its coding should not take more than a few

statements.

(Refer Slide Time: 04:44)

Now, let us do one example problem and normally when we learn anything we start

doing something very simple and then we do more sophisticated problems. The simplest

problem that we do is called as the RMS calculating software. It is a rather trivial

software which just reads a number reads three numbers between minus 1000 and plus

1000, computes their root mean square or RMS and then displays the result, very very

simple software.

(Refer Slide Time: 05:30)

Now, let us try to do the context diagram. In the context diagram as you said we need to

just draw a circle and represent the system and we write the name of the system RMS

software. Only at the context level a noun form of the process is allowed, in the other

levels we typically give a verb form to the process. And then it accepts 3 integers and

produces the result and we have the user for this.

(Refer Slide Time: 06:29)

So, the same thing we have written it here in this slide. The name of the software is

compute RMS and then there is this user who enters data items and the data items are 3

integers and it produces a result. So, this is our context diagram or the level 0 DFD; it is

extremely simple to draw.

(Refer Slide Time: 07:00).

Now, this is a very simple problem it just consists of a one function. Any decomposition

of this into level 1, level 2 etcetera will become highly artificial because this is a very

simple problem.

(Refer Slide Time: 07:18)

But then if we really want to decompose we will see that for performing the RMS

calculation, it first needs to read the numbers from the user; then do some validation that

they are within minus 1000 to plus 1000. And then perform the computation root mean

square and then display the result. So, these are the sub functions of the level 1 sorry

level 0 context diagram because there is only one functionality, it is a very simple

software. So, in the level 1 we decompose the function represented in the level 0 and

then we can represented in this form.

(Refer Slide Time: 08:00)

That if read numbers, read the data items that are entered by the user just look at here

that in the level 1 diagram we do not represent the external entities. The external entities

are represented only in the context diagram or the level 0 diagram. The data items are

entered into the read numbers, produces the validated numbers sorry it reads the numbers

and inputs the number to validate numbers. It validates and then gives the valid numbers

to this compute a RMS otherwise, it produces a error message. The error message is

given to the display a bubble otherwise, it may give an RMS message that is the result

and it produces that display, it may be an error or it may be the RMS.

So, that is the level 1 diagram, but as I was saying that there is a highly simple problem

and therefore, a level 1 diagram becomes a very superfluous and very artificial. Nobody

would really do a decomposition of a compute RMS that is a very simple function by

itself. And normally we would not decompose that and in real problem modeling DFD

modeling we do not decompose to this level, but just to give an illustration how

decomposition can be done I explained that with the simplest example.

(Refer Slide Time: 09:52)

So, I just mentioned here that we do not really decompose to this level. Compute RMS

itself is a very simple function and that can be represent, that can be coded using only

very few instructions.

(Refer Slide Time: 10:11)

.

Whenever, we do a DFD model a data dictionary must accompany it. The data dictionary

lists all the data items that appear in the DFD and then write the meaning of that data

item. And sometimes we might have to write a data item in terms of its component data.

So let me repeat that, that whenever we have a DFD model we must have a data

dictionary accompanying that.

(Refer Slide Time: 11:38)

The data dictionary gives the meaning of all the data items that appear on the DFD. As I

saying that a DFD model can consists of a large number of DFDs and all the data names

appearing in all these various DFSs are listed in the data dictionary and their meaning is

given. If it is a composite data item, it is expressed in terms of the simpler data items, but

for the simplest data item we just write its purpose. So, that by looking at the data

dictionary you should be clear about what are the meaning of the data that appear on

various DFDs.

The data dictionary is a very valuable document that is produced during structured

analysis. The team members refer to the various data using the name and the

decomposition given in this the data dictionary. If we do not have a data dictionary, there

is a chance of misuse. People may the team members may misunderstand the data that is

represented on the DFD and also while they refer to different data items, they may use

inconsistent names and that will make it very confusing.

So, the data dictionary standardizes the names of the data and explains their purpose and

what they consist of. The complex data items consists of maybe some simpler data it

mentions them.

(Refer Slide Time: 12:41)

For very simple systems, the data dictionary is quite manageable. If you have 10 or 20

data items then you can just write down on a piece of paper or something and that will

serve the purpose. But then in real projects the data dictionary can sub tens of thousands

of entries and if you start to manually write this then it becomes very difficult.

You may do mistakes or there can be redundant entries and when you want to search the

name of some data item becomes very difficult to search it manually. And therefore, all

DFD tools, structured analysis tools they capture the data that appears in the DFD and

build the data dictionary and maintain it in a relational database so, that query etcetera

becomes easy.

(Refer Slide Time: 13:55)

 So, all case tools help maintain the DFDs automatically and they help to automatically

search the data items.

(Refer Slide Time: 14:12)

(Refer Slide Time: 14:22)

The case tools we will see that we they can also answer query like a which data item is

affecting which processes. A process will affect which data items whereas, specific data

item is used where it is assigned values and so on. It becomes easy to answer this kind of

question when these are maintained in a automated tool using a relational database

system.

Now, let us see the grammar by which these primitive items are combined into more

complex data items. The rules are very simple, the symbols here. If you write a plus b

then we mean that a together with b and if we write c is equal to a plus b then c consists

of a and b. If we use this square bracket it means option, we write a comma b in square

bracket it means that either a or b.

(Refer Slide Time: 15:59)

If we write a bracket b then it represents that either a or a and b. If it is in curly bracket

then it represents the repetition. If we write name 5 that means, 5 data items 5 name data

items.

(Refer Slide Time: 16:26)

If we write name star it represents many name data items; equal to is of course,

equivalence. So, a equal to b plus c means a consists of b and c. So, a is a composite data

item containing b and c. As you can see that the data definition is very simple using few

operators like plus, square bracket, curly bracket and so on. And we can also write

comments here within two stars.

(Refer Slide Time: 17:09)

This is just one example here, a is a primitive data and I have written a is a integer.

Numbers is a composite data which is also a synonym is valid numbers and it consists of

three components a, b, c. Result is a data which sometimes can be RMS and other times

it can be error and RMS and error are primitive data item. And we have also mentioned

here in comment, the purpose for which that used; error is used to represent a error

message, RMS is used to represent the root mean square value.

(Refer Slide Time: 17:59)

 Now, if we practice a few examples few more examples we will see that given an new

example you can easily draw the DFD model. But, before we do that lets look at another

important concept in the DFD modeling called as balancing a DFD. Here we check, if we

decompose a DFD into a lower level DFD then the data that is input that is flowing in

and out of the DFD matches the next level. What we mean here is that let us say we have

a DFD model and we have some DFDs here.

Now, let us say we decompose this bubble take a 1 bubble here and we decompose into a

DFD diagram. So, we again let us say decompose into 3 bubbles these diagram and it

takes these data produces a data and this lets say finally, produces a data and this also

produces a data. Now, let us say this takes a and produces b; then in the next level we

must also have a taken in here and this let us say produces c and d, we must have b is

equal to c plus d.

This is balanced because this bubble here the input is a produces output is b and when

you have decomposed it into the next level, the data that is flowing into this diagram is b

just coming out from the diagram is c and d. And for balancing we see that the input is

balanced and for the output to be balanced c plus d must be equal to b. So, this rule of

balancing is used it all decomposition levels.

(Refer Slide Time: 20:42)

This is a another example here balancing. Let us say we have a level 1 DFD

representation, it is this that P 1 P 2 P 3 at 3 processes and they are exchanging some

data. And a is consumed by P 1 P 3 consumes c and e sorry the input to P 3 is c and P 3

produces d and e. Now, let us say in the next level we were decomposing this bubble

here. So, this is the next level diagram again decompose into 3 bubbles, there are some

data that are internally input across these different bubbles.

But just see here that to this bubble c is input and this bubble our outputs d and this

outputs e. Now, we check here yes c is input here, d and e are output here and therefore,

it is a balanced decomposition. But let us say we had another input here then that would

not be balanced.

(Refer Slide Time: 22:17)

Another concept is numbering DFD. So, far we saw that we just write to write the name

of the process in the bubble, but if we write a number that will help us in identifying the

bubble. For example if we write 0 is only for the context level, if we write the bubble 0

we can easily find out which bubble it is.

In the next level, if we in the level 1 we write 0.1 0.2 then by just looking at the number

we would know which diagram and that is the reason why the bubbles are normally

numbered; both by the tools and even if we are doing it manually. The context level is

assigned the number 0 that is the convention and at level 1 we decompose into a set of

bubbles. Let us say we decompose into 3 bubbles, then we number them 0.1 0.2 0.3

meaning that the parent of this bubble is 0 that is context.

 And similarly, if we let us say find a bubble whose number is 0.2.1 0.2.1 and then we

know that the level 1 diagram the second bubble, this is the parent of this and for that the

parent is the 0. So, this is a level 1 diagram sorry level 2 diagram and so, 0.1.2. So, this is

a level 2 diagram the parent of this diagram is 1 and for that this is the context diagram.

(Refer Slide Time: 24:44)

 Now, let us do one more problem which is the Tic-Tac-Toe game. Let us first understand

the Tic-Tac-Toe game, I think most are familiar with this kind of game. Here it is played

between the computer and the user. Let us say the player marks let us say by this red 0

and the computer makes let us say cross. So, the player mark is square here and then the

computer will mark something, in response to that the user will mark another square and

so on.

The player wins if we can occupy a three consecutive elements in the row or column or

diagonal. So, before the player can mark all along this diagonal the computer has

occupied the this one so, that the player cannot win straight away. And if the game all the

squares are over and no one has got any mark along a row or a column or a diagonal then

the game is considered draw.

(Refer Slide Time: 26:30)

So, there are 9 places to fill and each player that is the human player or the computer

they place their marks here. Now, can we draw the context level diagram of this? The

game is intuitively clear and we writing the software for this and we want to draw a

context level diagram for this problem. Please try this and we will discuss the solution in

the next class. And as I was mentioning that if we can do few problems, we can develop

the DFD model then given even a very sophisticated problem we can easily develop its

DFD model.

We will stop now; continue from this point in the next class.

Thank you.

