
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 21
Classification of Cohesion

Welcome to this lecture. In the last lecture, we were discussing some very general

concepts about a good design. And, we had said that design is a iterative procedure and

the designer can come up with different designs, but the different designs can vary in

their quality.

And, we are trying to find out how to distinguish between 2 designs? When can I say that

a design is good or bad? We identify some characteristics of a good design. One of the

very important characteristic is modularity. The different modules in the designs should

be more or less independent and we said that functional independence is a important

characteristic in good design. Now, we said that to identify functional independence, we

need to look at the cohesion and coupling among the modules.

Now, let us proceed from that point.

(Refer Slide Time: 01:42)

A good design where the modules functionally independence, these have high cohesion

and low coupling. If they have high cohesion and low coupling, we say that a modules

are functionally independent, but then we must define the terms cohesion and coupling.

(Refer Slide Time: 02:18)

Having a module structure where the modules; so, functional independence has many

advantages. One advantage is understandability; this is an example of modules where

there are no independence no dependence.

So, the modules are independent and here we can understand the different modules one

by one just check out this one module we can understand, there is no dependency.

Whereas, here where we have these modules there is high dependency to be able to

understand one module, we need to also understand the modules on which it depends.

And, we can see that a module has dependency structure with many other modules. And

therefore, to understand one module we will have to understand many other modules and

task becomes extremely difficult, but if there is functional independence. We can easily

understand the modules and also any error condition in a module is isolated. If, we find

that the function a system has a whole is not a function there is a error. We can easily

identify the error, but if they are dependent on each other heavily dependent on each

other, we will have to keep on tracing the education sequences and it may lead to just

going round and round without really able to determine the error.

So, the advantages of functional independence is that the complexity of the design is

reduced, it becomes easy to maintain debugs and also we can take out any one module

here and re use in another application. Whereas, here this situation is may not be possible

because, if we want to take this module for re using, we might have to take the other

modules on which it dependence or calls the functions of other modules.

(Refer Slide Time: 04:50)

Now, let us list the advantages of functional independence; one is that it reduces the

complexity of the system. It makes easy to understand, it reduces error propagation any

error in a module when the system fails; you can easily trace it to this module. Whereas

if they are heavily dependence you can just go round and round trying to figure out

where the error is, and becomes very difficult to debug if there is a high coupling and

there is a heavy dependency among modules.

The third reason why functional independence is advantageous is that re use of modules

becomes easier. If, we have developed an application consisting a functional in

dependent modules, we can just check out any module and re use in another application

without much problem. Where as if our modules structure is like this then you can just

check out one module and use it if you take this, we will have to also take out that entire

application.

(Refer Slide Time: 06:18)

Reuse is a major issue in software engineering, because it reduces cost if we can reuse

parts of one application, another application, it is very advantageous. And therefore, in

the design stage, we have to design such that reuse is facilitated and that becomes

possible if the module structure are functionally independent.

(Refer Slide Time: 06:55)

Now, we have been saying that functional independence is good it has many advantages

and so on, but given a design structure it may not be that all modules are totally

independent. That is a very idealistic design where no module ever interact with any

other module; in real applications modules do interact with each other they call each

other’s functions and so on.

But, the given an arbitrary application design can we measure the functional

independence of that design? So, that we can say that we can say that this is a better

design in another design. It would have been very nice if we could have come up with

very quantitative measure of the degree of independence, but we can do the next thing it

is very difficult to come up with quantitative measure, but we can do one thing is that,

we can classify the cohesion and coupling and based on that, we can approximately say

which is a better design than another.

So, let us me just repeat that point that quantitative measure of functional independence,

that is the cohesion and coupling in terms of their cohesion and coupling. There is no

accepted practice there is no accepted technique by which we can measure the functional

independence and everybody will agree with that. But we can do the next best thing, that

is we can characterize the cohesion and coupling in terms of certain classes. And,

depending on the class to which an application belongs the cohesion and coupling; we

can say that it is design is very good moderate bad and so on.

(Refer Slide Time: 09:07)

Let us see, how we can classify the cohesion and coupling existing in a design? Here, we

will see that there is a small scope for ambiguity, because you can argue with that design

belong to this class another class, but then more or less we get a fairly good picture. Even

though you do not quantitatively say that it is a 70.1 percent. We can say, that it is

between 60 to 70 or between 70 to 80 and that it self we will help us to the great extent.

(Refer Slide Time: 09:55)

First let us look at cohesiveness, the cohesion existing in a module can be classified into

co incidental, logical, temporal, procedural, communicational, sequential and functional.

So, that is 7 classes. And, the worst form of cohesion is co incidental. You, can just

examine a module and then you should be able to tell, where in this spectrum does the

cohesion of the module lie, is it co incidental and this will be a bad form of cohesion or

is it something like a temporal or procedural, which is middle order or is it functional,

which is the best form of cohesion.

Now, let us see what are these different types of cohesion? So, that given a module

structure we should be able to roughly place it in this spectrum.

(Refer Slide Time: 11:08)

First let us see, the worst form of cohesion that is coincidental cohesion. Here, there is no

thought or designed behind putting functions into a module, we are just randomly

assigned them to modules. The different functions existing in the program they have

been randomly put into different modules, without any thought or design.

If, this is the case that we select a set of functions, randomly and assign them to a module

and we ask the question that can you tell us what does this module do? Will be very hard

(Refer Time: 11:56) to give a simple answer to what the module does? We can say that it

does these and these and these etcetera.

(Refer Slide Time: 12:06)

Let us look at an example. Let us say we have a module and we cannot even think of a

good name to the module we just gave it the name AAA, because it does various stuff. In

a library management software, there are many functions like register students, register

book, collect fine, issue book, return book, and so on. We just took 3 functions here and

just put them part of this module, that it does little bit of inventory print the current

inventory and also register students and also issue book.

Now, if we ask what does this module do? We will say that it does some inventory

functions like print inventory, it does some student registration and it also does issue

book. So, we cannot give a simple one word description of this module to capture, what

it does?

There are functions which are doing very different things. This is an example

coincidental cohesion and given an example, you can easily find out given an example

module you can easily find out whether it is a case of coincidental cohesion.

(Refer Slide Time: 13:53)

Now, let us look at the slightly better form of cohesion called as logical cohesion. Here

all element here all elements of the module performs similar functions for example, all

functions do error handling, all may do let us say print statements or read data scan

statements. For example, all functions do error handling, all may do let us say print

statements are read data scan statements are all print statements etcetera.

So, here all the functions here do similar functions and just because the functions do

similar things we just decided to put them into one module. For example in an

application, if we put all print functions that generate an output report into a single

module then we say that the module has logical cohesion.

(Refer Slide Time: 14:46)

This cohesion also we can unambiguously and easily identify. For example, if we find

module named print, which prints various things like it prints grades, it prints

certificates, it prints salary slip, it prints inventory details and so on. So, just because all

these functions do printing we decided to put them into one single module and call it

print. And, then this is a logical cohesion not a very good form of cohesion, but better

than coincidental or random cohesion.

(Refer Slide Time: 15:26)

Slightly better form of cohesion is the temporal cohesion; here we group functions

together if they are executed within the same time span.

For example, let us say during initialization certain functions are executed one after other

and before any other function can execute the initialization functions done or let us say

we have a certain shut down procedure etcetera. So, here these functions do very

different things, but then they have been put into one module just because the run during

the initialization time.

(Refer Slide Time: 16:17)

Just to give an example, let us say we have a function called is in it and then we do check

memory check hard disk and then initialize the ports, then display some login prompt on

the screen.

So, here the functions to very different purpose something displays on the screen some

message, initialize port, then checking whether memory is alright, hard disk is alright,

etcetera, but then they are run on the same time span and that is the reason we have

decided to put them in one module called as in it. And, this is an example of temporal

cohesion that is the execute in the same time span.

(Refer Slide Time: 17:04)

A still better form of cohesion is the procedural cohesion. Here the different functions in

the module their part of some algorithm. For example, that they carry out some steps, let

us say for decoding a message, they do some steps like initialize and then let us say

discrete cosine transfer and then let us say entropy calculation and so on. So, these are

set of steps, which is part of algorithm and we have just put them together, but because

they are part of the algorithm in they do very different things.

(Refer Slide Time: 18:01)

A better form of cohesion is communicational cohesion. Here the different functions they

operate on the same data structure. So, the result is shared between the different

functions. Just consider the set of functions defined on a array or stack, let us say stack

push pop etcetera. So, here the functions on the stack they all operate on the stack and

use the data structure. And, this we can call it as a communicational cohesion.

(Refer Slide Time: 18:41)

These an example of a communicational cohesion is handle student data is the name of

the module. And, then there is a data here student data 10 000. So, this is the data here.

And, then you have various functions there in the module, which are operating on this.

For example, search student data print all data and store student data update student data

and so on.

So, this is a better form of cohesion than the cohesion that we talked about so far is the

communicational cohesion.

(Refer Slide Time: 19:24)

And a still better form equation is a sequential question you are again the different

functions in the module share data, but then they just do not randomly update the data

here the data is passed from one function to the other in a sequence. For example, first do

sorting then, search then, display and so on.

(Refer Slide Time: 19:51)

But, the best form cohesion is a functional cohesion. Here, the different functions the

shared data, but then they work towards achieving a single function. For example, if all

the functions to manage the employees pay roll we just put them together into a module,

like compute overtime, compute the current months’ pay, change the basic salary and so

on.

So, these are all towards managing the employee’s payroll. And, here one of the

distinguishing characteristics is that by looking at the module structure, you can just give

a very simple name here to the module saying that manage employees pay roll. Because

all functions work towards doing some parts of the managing employees payroll. So, one

test whether module has functional cohesion is that we should be able to describe the

function of the module or what the module achieves by using a very simple sentence?

(Refer Slide Time: 21:23)

Now, let us see how to identify the cohesiveness of a module? Let us say we are given a

module and we are asked to find that, what is the cohesion here? Is it a good form of

cohesion, bad form of cohesion?

Now we know the 7 classes of cohesion starting from very bad case of coincidental

cohesion. And, then the best form of cohesion that is the functional cohesion. We, can

imagine that there may be some ambiguity, whether to consider it as a sequential

cohesion or let us say procedural cohesion and so on, but then if it is a bad case of

cohesion, we can easily identify or whether it is a somewhat level of, but then or a very

good case of, but then cohesion so, that much we can easily identify.

One hint about the identifying the cohesion is that first look at the module and the

functions that it has and try to describe what is the function of the module? What does

the module achieve? And, then we write this in a sentence and if we find that if the

sentence is compound that it does the this and this and so on, then it has a sequence or

communication cohesion.

We are not mentioning here the coincidental cohesion, because that is easily identified

and that is a bad case of cohesion, that the functions are totally unrelated, but these are

the middle cases here we are just trying to give some hint. How to identify? If, it is a

compound sentence, then we can suspect that it has sequential or communicational

cohesion.

If, the sentence was worst like fast it does these it does these and afterwards it does this

and so on. Then it is either a sequential or temporal cohesion. If it has words like the

initialize shut down procedure etcetera, then it is possibly has temporal cohesion.

(Refer Slide Time: 24:03)

So, far we looked at the cohesion classification and given a module how to identify the

cohesiveness? Now, let us look at coupling given 2 modules can we identify what is the

extent of coupling between these 2 module. We say that 2 modules are highly coupled, if

they have a very complex interaction among each other. If, there is no interaction, then

will say that there is no coupling, but then the cases where the interacts that is the call

one module calls function of another module. Then will say that there is a coupling, but

then we will see how to identify the class of coupling or how complex is the coupling?

Roughly, we can say that the coupling between 2 modules can be identified by looking at

the interface complexity.

(Refer Slide Time: 25:11)

Now, just like we did the classification or cohesion, we will do a classification of

coupling, there are 5 types of coupling it exists.

(Refer Slide Time: 25:23)

So, these are named as data coupling, stamp coupling, control coupling, common

coupling, and content coupling. The data coupling is a simple form of coupling and it is a

low coupling and it is a good case of coupling. And, if it is a stamp coupling then there is

a complex data that is interchanged in simple data coupling, only simple data items like

integer or character etcetera simple data items are exchanged between 2 modules.

In stamp coupling more complex data items like a array or a big structure etcetera are

exchanged between different modules. And, this is still an form of coupling worst form

of coupling and control coupling, where one module decides the control path in another

module. Common coupling they share some common data and then the very bad case of

coupling is content coupling and this is so bad content coupling, that earlier using

assembly routines and machine language programming content coupling was possible,

but now all high level languages they it is difficult to write a program where there will be

content coupling.

So, the bad cases the worst case of content coupling they cannot even write that code

now in high level languages, because the high level languages have not designed such

that this coupling does not occur, because it is a very bad case of coupling and make a

program extremely complex. We will stop at this point and we continue in the next

lecture and we look at the how to given a module 2 modules? Can we study these 2

modules and identify, what is the extent of coupling or which class of coupling out of

this 5 classes exists between those 2 modules?

We will stop now and continue in the next lecture.

Thank you.

