
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 02
Introduction- II

Welcome back. In the last lecture we were discussing some very basic issues. We are

debating whether program writing is a art or a engineering. We said that, initially every

technology starts in a art form slowly becomes a craft and then graduates into an

engineering approach.

Software is no different and in the engineering approach we said that the past experience

of large number of program developers has been systematically investigated,

documented, scientific basis techniques have been provided, but then some are thumb

rules; we look at those thumb rules as we proceed and the techniques.

Now, let us continue with what we are discussing.

(Refer Slide Time: 01:20)

Let us try to understand; what is exploratory software development. Exploratory

software development is the software development practice of a (Refer Time: 01:37). Let

us say somebody who just starting to program, just learning programming and he is

doing small assignments; how will he develop the program: that we call as the

exploratory software development or the build and fix style of development. This is the

same style which the early programmers used, because there were no other techniques,

they had to use their intuition and develop and that is called as a build and fix style.

In this style as soon as the problem statement is given based on the understanding of the

problem statement start writing the program. And normally that is a dirty program in the

sense that it will have lot of bugs. And then the programmer tests it, the bugs are fixed, as

and when they are noticed.

If we document this development style the build and fix style in the form of a schematic

diagram, we will come up with this diagram.

(Refer Slide Time: 02:58)

As soon as the problem is given we document we do the initial coding, and after the

initial coding is complete start testing, find that the large number of bugs getting

reported. Maybe some of them are cross, the program crosses or may be just large

number of bugs compilation errors and so on and then just fix it. Again compile test and

again see that there are errors keep on this cycle: fixing the program and testing. We keep

on doing it until we find that, it is as per your understanding of the requirement for the

program.

So, this is the model of a exploratory style of development. Let us keep this in mind,

because as we proceed we will once in a while contrast with this basic style of

development with the engineering style of development.

But one thing is that if we use the exploratory style as most of the new programmers use

they can develop small programs. But then if the project is nontrivial, it is large project

requiring hundreds of thousands lines of code and you do this that initial coding find

errors keep on fixing this will not work, the project will never complete. And even if

somebody really puts lots and lots of effort completes it somehow, he will come up with

a very poor quality of software.

But then what is your basic reason let us try to investigate that; why is it that this style of

development the exploratory style is does not work for large projects, only for very

trivial programs we can use the exploratory style.

(Refer Slide Time: 05:45)

Let us try to understand what is wrong with the exploratory style. To understand this let

us look at this plot. As the programs size increases you develop large and larger

programs and still keep using the exploratory style or the build and fix style. You will see

that for small programs, maybe you are successful, but there is the program size

increases; the effort, time, cost all increase exponentially. Maybe, to develop let us say a

100 line program you just took couple of hours, but to develop a 1000 line program you

took several months.

But then, after some size the exploratory style just breaks down. Even if you try your

best using the exploratory style still you cannot develop after a certain size, whereas the

software engineering approaches let us look at here. There is a almost a linear increase in

the effort, time, cost compared to the program size. So, if a 1000 line program took

couple of hours a 10000 line program we will should take only about 10 times of that,

not like 1000 times or 100 times.

But then, let us assume that there exists a machine to which you can give the problem

statement it will come up with the code. It is a robotic machine which can write code. If

that can be realized then it will be exactly linear. If you take some time some cost is

incurred to give 10 times exactly 10 times will be incurred, whereas using software

engineering principle it just increases slightly, we will see why.

But then, one very basic thing we need to remember from this slide is that the

exploratory style, the cost effort time they increase almost exponentially, whereas using

software engineering principles we are keeping them down to almost a linear increase.

(Refer Slide Time: 08:51)

But then, the question naturally arises is that why is it so, what is wrong with the

exploratory style, why is it that the exploratory style the cost effort time to develop

increase exponentially, and also break down after certain size? And also, the other

symptoms are that: the programs are poor quality unmaintainable and it is very difficult

to use the exploratory style in the team development environment. But let us investigate

why it is so, what is wrong with the exploratory style. Whereas, in using the software

engineering principles we are able to overcome this.

(Refer Slide Time: 09:49)

So, that is a basic question we must understand. The answer to that: you should be able

to answer that why is it that the exploratory style there is exponential increase in the

effort, time, cost, and we keep that down to a linear using software engineering

principles. What is really the thing that is working here for software engineering?

(Refer Slide Time: 10:25)

Let us investigate that, because that is a very fundamental principle. Why software

engineering works, whereas the exploratory style does not.

To understand that we need to little bit understand the human cognitive mechanism.

Long back result from Miller 1956 said that human memory can be thought of made of

two distinct parts: one which is short term memory and the other is a long term memory.

And as the name says, the short term memory is one where we remember something, but

only a small duration time may be several seconds or just minutes. Whereas, long term

memory remember it for months years and so on, short term memory if it is there you

tend to forget it after some time.

(Refer Slide Time: 11:26)

Let us see the working of the human cognition mechanism. Let us say as I say that see

look at the watch it is 10:10. How many hours remaining today? It is 10:10 by the watch,

how many hours remaining today? The way the human mind will work is that 10 AM

that is in the short term memory you saw the time it is 10 AM and from your long term

memory you will fix that one day is 24 hours. And now that is also in your short term

memory that 24 hours is a day, and then there will be a mental manipulation unit which

will compute the difference 24 minus 10. And then you will say that its 14 hours or 13

hour 15 minutes.

(Refer Slide Time: 12:37)

If we put that down in the form of a diagram, we will see that there are the long term

memory holds large number of items. Depending on the person it can hold billions

trillions of item, whereas a short term memory can hold only few items. And then these

are fixed from the long term memory, the short term memory, from the observation

looking at the clock and so on, 10 AM. And then the processing center where some

computation can be done and the answer is given.

(Refer Slide Time: 13:26)

But then what exactly is the short term memory, what can it store, how long; let us look

at it. An item stored in a short term memory gets lost; with time may be several seconds

minutes or hour. It gets lost from the short term memory, because there are too many new

information that has come into the short term memory or that it just play and decays with

time. But then, the main thing is that it stays for very short time and depending on

whether there are many new information coming the time duration can be even very

short, can be typically tens of seconds.

But then, somebody can remember something longer by recycling in memory. For

example, you went to the market wanted to buy some things, just keep on recollecting

again and again that what you need to buy. So, you were recycling in the short term

memory.

(Refer Slide Time: 14:45)

But then we said that the software memory stores items, but what exactly is an item. An

item can be a character, it can be a digit character like a b etcetera, digit like 5 6 etcetera.

It can be a word, a sentence, a story, and even a picture. If somebody remember some

numbers let us say 5 9 7 etcetera each one is considered one item. But then, if there is a

relation between them then it can be considered as a one item. Let us say 1 to 9: 1 2 3 4 5

6 7 8 9. So that will be one item, because you recognized that there is a relation it is 1 to

9.

Similarly a word, individual letters if there is no relation there will be separate items, but

if they are related they reward mean something then that is just one item. The sentence is

one item, story is one item and even a picture is one item. And they occupy one place in

the short term memory.

One conclusion here we can make is that if you remembering something and you are able

to build the relation between the things that you want to remember, then it becomes

easier to remember. That is called as the Chunking.

Let us just look at an example of chunking.

(Refer Slide Time: 16:27)

Let us say I ask you to remember the number 110010101001. You will struggle to

remember this, because there are too many digits and then the relationship among them

is not so obvious.

But then, let us say just group these into three and I give you the octal form, 6251 then it

becomes easy for you to remember, because the short term memory about 7 items it can

easily remember. And anything more than 7 there is a exponential increase in effort to

remember you will have to look at various relations between them try to reduce let us say

you might say that initially 2 or 1 then two 0s 101 etcetera. You will struggle to find

relations, reduce it, chunks, and then try to remember so that becomes very hard to

remember a large set of items. That is because of the limitation of the human cognition

mechanism that the short term memory can hold only 7 items.

And as long as you are able to find relations and so on it becomes easy for remembering

that as long as it is less than 7. So, that is the principle of chunking.

(Refer Slide Time: 18:09)

There are many day to day experience where you can the short term memory is evident.

For example: you looked up a number telephone number and then you found that you not

able to dial it, it is busy. But then, you will see that after few minutes you are almost able

to remember the number. But what about after several days, you will hardly remember

anything.

(Refer Slide Time: 18:42)

But then, the number of items that somebody can store in short term memory is about 7

and that is called as the magical number 7. Any set of information which has 7 items in it

for a ordinary person it becomes easy to understand that. But if the number of items are

large let us say tens of thousands let us just look at in very trivial example. Let us say

you met 5 people somewhere you will almost remember them. But let us say you met

10000 people for 10 minutes, hardly you will remember anybody. That is because of the

number 7, that is if the short term memory capability is restricted to 7.

So, if the information has more than 7 items it becomes exceedingly difficult to

understand and to remember. If it has let us say 15 items to understand and remember

you take exponential time compared to there are 5 items. If there are 100 items then it

becomes real difficult.

(Refer Slide Time: 20:18)

But then you would ask that what is this has got to do with programming. And how does

it provide a answer to the exploratory programming style, the effort, cost, time duration

etcetera increasing exponentially breaking down after sometime, whereas, software

engineering is able to hold it linearly with respect to the problem size.

The answer is that: to understand a program we must look at what are the variables, how

do they interact. Let us say you are writing a small program, having only a couple of

variables, you can easily look through the code understand what is happening. But let us

say you are looking at a program which has thousands of variables there, and each

variable is set by some programming constructs being used and so on. For the human

mind it becomes extremely difficult to understand that what is going on in the code, how

does it work, what it is achieving, and so on?

So, as long as the number of independent variables in a program is small it becomes easy

to understand, but as the number of variables in the code increases it becomes very

difficult to grasp, to understand and requires and unduly large effort to master the

problem. But then, the next question that arises is that if that is the case, that if the

number of independent variables and so on are more than 7 it is a large problem dealing

with many things, then how does the software engineering principles they contain the

complexity of this problem.

(Refer Slide Time: 22:40)

Actually, before we would answer that question just like to mention that for machines

there is no such problem as short term memory, of course they have RAM and so on, but

then the restrictions are not so severe. So, if the machine would like write the code then

the slope would be almost linear.

Now, let us understand how the software engineering principles contain the complexity.

Because, we said that as the complexity increases the human mind by itself would take

exponential time effort to understand to solve the problem.

(Refer Slide Time: 23:35)

Actually there are two major techniques that are used to overcome the cognitive

limitation of 7. These two important principles are used in almost every technique that

we discuss in our lectures: one is called as obstruction and the other is called as

decomposition. Let us understand what exactly the obstruction and what is

decomposition, it is the two independent techniques, how do this reduce the complexity

of a problem. And then later when we use these techniques in various software

engineering tools and techniques it will become clear to us that whether we are using

obstruction or decomposition.

Now, let us investigate these two fundamental techniques to handle complexity. Because,

software engineering is after all developing programs efficiently, as the size increases we

want to develop only with linear time cost effort and so on. And for that we need to

effectively handle complexity increase in complexity. And these two techniques to

handle complexity are used in almost every software engineering principle. Let us look

at these two techniques.

(Refer Slide Time: 25:08)

One is the obstruction: let us see what is meant by obstruction. In obstruction we focus

our attention only on some aspect of the problem and ignore the rest. This is also called

as model building.

Let us say we want to develop a large building. Now we want to see that how does it

look like. We will ignore all other aspect like what are the strength, what is the wall

thickness, what is the internal plan and so on; we just want to see how it will appear.

Then we will concentrate only on its frontal appearance and we will ignore everything

and we can construct a model of that; the frontal view of the building. Similarly we can,

let us say we want to see what will be the floor plan for a building. We will just

concentrate on that, we will not bother about how does it appear externally is a thickness

of the wall and so on; we were just concerned about the floor plan.

If we are let us say concentrating on let us say what is the hitting requirement of a room;

we will just look at how much is the, where is it located, is it in the top floor, how much

heat it is getting etcetera, and we will omit other unimportant aspects, for every problem

we can construct and obstruction. The obstruction is also called as a model building if we

create a model we concentrate on some aspect and ignore the rest. So, model building is

the same as an obstruction. And this is an important technique in software engineering

for we want to build models of everything, requirements, design, code, etcetera; and that

is one way to tackle complexity.

We will stop here and we will continue in the next lecture with this obstruction

decomposition and so on. And we will look at the other issues in software engineering.

Thank you.

