
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 16
Requirement gathering and analysis

Welcome to this lecture. In the last lecture, we were discussing about how to go about

doing Requirements analysis and specification. We identified the main task that are to be

completed during requirement analysis and specification said that first step to do the

requirements gathering and then, need to analyze the gather requirements. And finally, go

about doing the specification and then get the specification reviewed by the customer and

other stakeholders.

Now, let us look at the second activity in the development process which is the analysis.

We had looked at the gathering activity, seen the main activities that are to be performed

during the requirements gathering and then, we are looked at a case study; simple case

study to understand that what are the activities and how they are to be performed. Now,

let us look at analysis of the gathered requirements.

(Refer Slide Time: 01:30)

So, this is the second task that we have written here. In the requirements process, the

main focus analysis is to identify the requirements problems. For this, we have to go

through all the gathered requirements and clearly understand what all is required by the

customer and then, we analyze to identify and remove requirements problems. There are

3 main problems that typically exist in a requirement gathered requirements; these are

called as inconsistencies, ambiguity, and incompleteness.

Let us try to find out that what are these three problems inconsistency, ambiguity and

incompleteness and how to identify these problems and once the problems are identified

these are eliminated by discussing with the customer end user to remove this problems.

(Refer Slide Time: 02:57)

Now, first let us look at the ambiguity problem. Ambiguity as the name says is that the

requirement is beg; it is not precise enough, it can have multiple meanings. Let us start

by taking an example. Let us say one of the requirements that was obtained is that all the

end users are customers, have the same control field. This was one of the statement made

this is the actually an ambiguous requirement all customers must have the same control

field.

What are the problems here? The problem is that different interpretations are possible.

Does it mean that the control field is one control field which is shared with the multiple

customers and if the change it, other customers are able to cheat and so on or is it that

similar control fields are present in with different customers?

We need to discuss with the customer to check what was really meant is; is that there is

only one cause control field which is shared and as the action done by each controller

each customer it also affects the other customers or is it that they have similar control

fields here same control field? But then, these are independent.

(Refer Slide Time: 05:08)

Now, let us look at an example of a inconsistent requirement. As the name says in the

inconsistent requirement, some requirement contradicts some other requirement. For

example, let us say one customer says that turn on the heater and open water shower

when the temperature and the chemical reactor exceeds 100 degree centigrade.

But then, another customer has given the requirement saying turn off the heater and turn

on the cooler; not the water shower. So, the same requirement when temperature exceeds

100 degree centigrade, the action to be taken is contradictory; need to discuss with the

customer which a which one is the correct.

(Refer Slide Time: 06:12)

Incomplete requirement is the third category of the problems that we need to the watch

full or during analysis we need to identify all incomplete requirements and eliminate

them. Incomplete requirements are the requirements that the customer has forgot or does

not realize that these will be needed. Just to example; just to give an example and the

customer has not recorded or has not expressed what will happen, when the temperature

falls below 90 degree centigrade? They are says that when the temperature is greater than

100 degree centigrade do something; but then, on the lower side of the temperature has

not recorded any action to be taken.

So, that say incorrect requirement; it is actually incomplete. We should have actually

recorded that when the temperature is less than 90 degree; heater should be again turned

on and the water shower should be turned off to maintain the temperature between 90

and 100.

(Refer Slide Time: 07:33)

During the analysis of the gathered requirement, must understand the gathered

requirements well and then remove the ambiguities inconsistencies and incompleteness

from the gathered requirements.

(Refer Slide Time: 07:53)

This is even though we just said it simply, but it is actually a difficult task; without a

working system to have a in depth understanding of the problem based on what the

customers have in their mind is a difficult problem.

(Refer Slide Time: 08:15)

The experienced analysts that is the person who gathers requirement and specifies that

typically called as analysts; the analysts take time to completely understand what the

customers need do the analysis and the specify they devote lot of time here because this

is a difficult task.

(Refer Slide Time: 08:50)

The experienced analyst known that it is worth while spending little bit more time in

doing the requirements gathering and analysis, work well. Because unless we are have a

clear understanding of what is to be done; it is impossible to develop a satisfactory

solution.

(Refer Slide Time: 09:18)

During the gathering of requirements and the analysis, several things must be clearly

understood that what are the problems that the user wants to solve; what features are

needed and how can this be implemented? Because if the user wants to do something

very far fetch, it is difficult to implement. It should not really accept that; we should

change modifications to that which can be meaningfully solved and then, must

understand what are the complexities while solving the problem.

(Refer Slide Time: 10:07)

Even though, the analysis activities carried out very thoroughly, still some problems may

remain and for this formal specification technique were very critical software can be

develop because formal specification is a very expensive, time consuming task and if

some part of the software extremely is sensitive critical parts can be we can have a

formal specification after we have develop the requirement specification document.

(Refer Slide Time: 10:48)

Now, after we have removed all inconsistence anomalies incompleteness from the

document, you go about documenting the requirements. Now, let us see how to write the

SRS document is a very important skill. Let us see how to go about.

(Refer Slide Time: 11:15)

Now, let us look at the specification task that is how to write the requirements document.

Here, we have the gathered requirements and all the problems from them have been

removed through the analysis activity and now, we get down to systematically organize

the requirements and then document them properly.

(Refer Slide Time: 11:44)

The SRS document is a very important document used by various types of users and our

document should be written SRS document such that it can be understood and useful to

different users because they may need look for different types of information in the SRS

document. It serves as a statement of the user need. It is a contract document. It is a

reference document for the development team to start development work; for the testers

to design the test cases and also it is the definition of the problem based on which the

developers start to develop the work.

(Refer Slide Time: 12:40)

The SRS document should be written in the form of a black-box specification. What do

you mean by a black box specification of the problem? The black-box specification is

actually the functionality as can be observed externally that is what is input to the system

and what gets output to the by the system?

The system appears as a black box, we do not know that based on the input data which

function here does what etcetera, etcetera. But we know that what will be input and

based on this, what output will be generated that is the input output behavior. The

internal details we should not document or try to document, we just document the input

output behavior that is based on input what sort of output should be produced.

(Refer Slide Time: 13:58)

In other words, you can say that the SRS document should focus on what needs to be

done based on the input data, what the system should do rather than how to do.

(Refer Slide Time: 14:23)

The requirement document should be written in end user terminology because it is the

end users who will see whether all the requirements have been satisfactorily represented.

It is written as a document, which can be understood by several types of users that is the

end user, the testers, the project manager, the development team members and so on. But

then, if some parts are very critical separate formal requirement specification document

can be written for that.

(Refer Slide Time: 15:15)

Now, let us see before starting to write a document or what should be the sections, how

should we go about writing the subsections and so on. Let us see overall what exactly is

a good SRS document? One is that it should not be too (Refer Time: 15:37). It should be

used the minimum writing that is needed should be concedes and at the same time should

not leave out details are the ambiguous.

It should be a black-box specification; should specify what the system must do and not

say how to do it. It should be easy to change; that is if some functionality tomorrow

changes, we should be able to change very quickly and how do I we ensure that it is the

document is easy to change is that we have to structure it well, like if you want to change

one functionality, we should be able to change one plus should not have to change and

multiple pages different places and so on.

It should be consistent. It is different functionalities, they should be consistent; should be

complete, all functionality should have in represented the SRS document.

(Refer Slide Time: 16:50)

And also it should be traceable. Traceable means as it is functionality identified in the

SRS document is implemented, we should be able to identify the functionality is

implemented by which part of the design which part of the code and so on. To be able to

have traceability, the first thing is that we have to a proper structuring of the document.

For example, the functions have to be precisely written each function should be

identifiable by a number or something and should be written at one place and then, it

should become possible that given a design element, we should be able to tell it

implements which functionality or given a code segment that we want to change let us

say or we find a error in a code segment, we should be able to tell which functionality is

would have got affected.

So, this is called as traceability; very important concept that given a function requirement

number should be able to tell which part of the design implements that and which part of

the code implements that design. Also in the other way given a code element should be

able to tell, it implements which part of the design and also it is functionality.

The SRS document should be written such that it is verifiable that is should be easily we

can write test cases and check whether it can be we can clearly say whether the

requirements is satisfied or not. If you have a requirement like let say the developed

software should be user friendly. It is very difficult to test. Even if we test for user

friendly, then it may not be accepted by all we might check that it is user friendly; but

then others may not agree.

So, this is a very difficult requirement to verify while writing the requirement document

we have to ensure that every requirement can be tested satisfactory.

(Refer Slide Time: 19:46)

SRS document should not include not only the how to aspects; but other things like let us

say project development plans like what will be the cost, staffing schedule, tools to be

used etcetera because the SRS document is used even after the development work

complete. So, the lifetime of the development plans are till the development completes;

but the SRS document out lifts that and SRS document should not include development

plans.

Similarly, it should not include testing assurance plans, Configuration Management, test

plans, Quality Assurance because they have different audience and different lifetime.

SRS document has several audience and we write will be those aspects which are if

interest all the audience. The designs etcetera, they are also not to be included.

(Refer Slide Time: 21:04)

Now, let us see how to go about writing the SRS document. There are 4 important parts

in any good SRS document. Possibly, the most important part the Functional

requirements and then, you must identify the External Interfaces. The external software

and hardware with which the software needs to interact and the users and then, the Non-

functional requirements, we will see that there are some requirements which are not

cannot be specified as functions.

We will see what is the distinction between a functional and non-functional requirement?

We have to have a section on the non-functional requirements and what are various

constraints on the system? For example, one constraint maybe that it has to follow

certain standards or maybe that it has to use a open source database first.

(Refer Slide Time: 22:27)

Let us concentrate on the functional requirements because this is the most important part

of any SRS document and it forms the bulk of the document. Here, we identify what are

the functionalities or facilities that the software will offer to the users and we document

in the form of the input that the user will have to give; the output that will be produced

and also we have to mention that what would happen when the user gives invalid input.

(Refer Slide Time: 23:16)

Identifying the functional requirements is a very important skill just to give an example,

let us say give you a problem that you have to develop a library software.

So, what are the functionalities that it should have or let me give another problem that is

you are asked to develop a word processing software that is somebody should be able to

write a document, something like a Microsoft word or something that will be a good

word processing software. So, what will be the functional requirements of that? To

identify the functional requirements, we have to see what facilities it provides. For

example, let us say library software. We have to look at who are the different users the

librarian and then, the library members and possibly the account.

Now then, you have to look at what are the facilities required by each type of user. A

library member might like to issue book, return book query whether book is available.

The librarian might like to create members, it like to delete members, might like to check

if there is fine against anybody, might like to create books, delete books etcetera. The

account might like to check, what is the financial position, might like to enter the grants,

might like to enter the fees, might like to register the expenses and so on.

So, from each users perspective, we have to look at the software terms of the facilities

provided and each facility it basically some meaningful work that the user can

accomplish using that and once you have identify the functional requirements each

functional requirement, we need to document. For every function, we need to describe

what will be achieved and what are the approaches and techniques that will be deployed

and also need to identify the input and output. Typically, every function requires a input.

It does some processing and produces some output. For example, query book function,

for a library software. In the query book function, the user gives the name of the book.

So, that is a input.

The software checks the book database for those books which manage the, which match

the user query and then, it produces the output. So, every functional requirement must be

documented in the form of a overview of what the functionality will achieve and then, it

possible we need to identify the input and output.

For every functionality, it may not be feasible to produce to think of the input and output.

We will look at more details of how to document the functional requirements; but the end

of this lecture must be clear about what is a functional requirement? A functional

requirement is a facility provided by the software using which user can get some

meaningful piece of work done.

Let us now stop here and from this we will proceed; we will look at more details of

functional requirements non-functional requirements, constraints and so on in the next

lecture.

Thank you.

