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Lecture - 02
Design Representation

In this lecture we shall be talking about Design Representation. Now, earlier I had said

that you can create a design using a hardware description language; verilog with respect

to this course. Suppose we create a design in some hardware description language like

verilog; now the question arises at what level do it typically create the design; or how do

we create? How do we visualize a design?

So, when we talk about design representation; what you mean is that, given a design;

how we can visualize the same design from different angles? Now, the way we shall be

presenting here is that there are three distinct ways or three distinct angles from where

you can visualize the same design and the implications will be a little different; let us

see.
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So, design representation as it said this talks about how we represent a design. A design

is nothing but you can think it  as a black box that  is  trying to perform its  intended

operation. You have designed that block to carry out certain operation and that is your



design. Now, design representation we are considering at three different levels; one you

are calling it as behavioural, structural and physical.

Now, with  respect  to  verilog  coding  these  terms  behavioural  and  structural  will  be

coming repeatedly and we will be understanding the exact differences and how we can

code behavioural and structural designs in verilog in a very efficient way and of course,

the third representation is physical. Now, there is a very interesting way to just express

this design views or viewpoints, it is with respect to something called a Y-diagram.

(Refer Slide Time: 02:39)

Now, this name has come because it has a shape of a Y. So, you think of an imaginary Y

with  the  three  design  representations;  in  the  three  directions.  Let  us  say;  this  is  our

behavioural domain, this is our structural domain and this is our physical domain. Now,

just along each of these domains; like for example, in the axis of behavioural domain.

Here we are talking about a design in terms of its behaviour; like in a very high level

case, you can think of an algorithm or a program; you can think of a specification, you

can think of Boolean expressions, you can think of truth tables; state diagram and so, on;

these are all examples of behaviour.

Now, when we talk about structural domain; now well we will we had explained in the

last lecture what is a net list and net list is nothing but some building blocks and their

interconnections.  Now,  this  building  blocks  can  defined  at  various  different  levels;

depending on that  our structural  domain specifications can vary. So, it  can be at  the



register  transfer  level,  it  can  be  at  the  functional  level,  it  can  be  at  the  gate  level,

transistor level and so, on. And talking about the physical domain; here you are actually

talking about the implementation.  Like in the ultimate case, when the final design is

complete; we would be getting our chips or a printer circuit board.

Before that our designs will be placed on a silicon layout in terms of cells. Now, what

will  those  cells  contain?  They  will  contain  some transistors;  which  will  have  some

layout. So, these are all implementation or physical design related things; that our chip

the cells  that our put on a chip and the transistors that make a cell.  So, here we are

looking from a angle which talks about the actual implementation.

So, in one side was the behaviour; one side was the net list view and the other side was

the actual physical implementation view. So, these are the three viewpoints; now there is

some interesting ways to look at these Y; let us look at it once more from this point of

view.

Here we have showed it in a slightly different way; behaviour, structural, geometry and

you see we have drawn some concentric circles. The outer most circle indicates the most

abstract design, so at the behavioural level; this outside circle indicates systems is like in

highest level my system a consist of two processors one memory and one I O module;

this is my highest level design of the system.
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So, this is my behaviour; so, this in the structural level will be a net list that consisting of

interconnection of CPU’s and memories as I have said the example and in the physical

level; this will consist of some chips a collection of chips one may be processor, one may

be memory and so, on. So, as you go to the inner circles you are carrying out synthesis,

you are refining your design like at the next level your behaviour is your algorithms.

Here you have subsystems and buses, here you have some clusters; next level you have

register transfer level blocks; you have ALU’s and registers net list level and here you

have macros and floor plans.

Next level inside you have logic cells; gates and flip flops. So, here you have connection

of gates and flip flops, here you have cells module plans and at the lowest level you have

the transfer functions, transistors and polygons. So, as you go from the outer most circle

towards  the  inner  most  circle;  from all  the  three  viewpoints  your  design  is  getting

refined, from very high level or abstract see from a very abstract level in the behaviour;

you will say the well I want a computer system.

In the structural level, you will say that well I need two processors and one memory

more block. Now in the physical level you will say that well on the board I need four

chips;  these are  the different  ways to  look at  the same thing.  So, as  we have move

towards the centre of the circle each of these blocks will get further refined, they will get

more detailed out and will be having some kind of a top down design process.

Now, if you think of it well we normally do not do it this way that at one level; we have

all  the  three  viewpoints;  then  we  go  to  the  next  level,  again  look  at  all  the  three

viewpoints. So, we really do not work exactly in that way; rather we work in an alternate

way which is shown in the diagram on the right. So, here I am showing the behaviour

axis here; structural here and geometric here or the physical here. Now you see; here I

am giving an example, we start with an algorithm at the behavioural level; so, highest

level is algorithm.

So, we carry out some transformations in a systematic way which is represented you see

as a helix here; from the outside you slowly move towards the inner most point of this of

this structure. So, from the algorithm; you translate into processer which you translate

into a chip floor plan and each of the blocks in a chip floor plan you translate into finite



set machines; they will be translated into registers and ALU’s, they will be translated the

physical level in to modules which will be placed module placement.

Then each of these modules; will be having a description at the behavioural level module

description now each of the modules will be designed as a net list we call them as a leap

cell  they  will  be  placed  cell  placement.  Now, each of  the  cell  will  be  expressed  as

Boolean  expressions  they  will  be  realize  is  in  transistors  and  finally,  there  will  be

realized using the layout masks.

So,  you see this  is  this  helical  structure is  more  natural  in  terms of  the steps that  a

designer  actually  follows.  So,  although  that  concentric  circle  is  a  good  way  of

representing, but the actual process that you follow is this helix; from the outermost point

we slowly move towards the centre  of the Y; this  is  the so,  called top down design

process.
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So, let us again come back to the behavioural representation; here we shall be showing

you some examples in verilog. So, just to repeat in the behavioural representation we

specify; how a particular design should work; that means, given a set of inputs; what

should be its output. So, here we are not telling that exactly how the design has to be

implemented.  Some examples  of  behavioural  representation  are  Boolean expressions,

truth tables table of input and output values.



So, you can write algorithms in some standard high level language like C that is also

behaviour or algorithms written in hardware description languages like verilog or VHDL

these are all examples of behavioural representation.

(Refer Slide Time: 11:01)

Now, let us take an example a simple example of a full adder. So, a full adder we will

have two inputs A and B and a carry input C. So, it will be generating a carry output and

a sum like this; A, B, C are the inputs and S and C y are the outputs. Well, now I am not

trying to explain how a full adder works; you already know the basic definition of full

adder; I am just writing the logic expressions of the sum and carry. So, the sum and carry

expression in terms of A, B, C will be this; A, B bar C bar or A bar, B bar, C or A bar, B

C bar or A, B, C; which is nothing but A exclusive or B exclusive or C.

So, it is the exclusive or of the three inputs that is sum and carry is nothing but A, B or a

C or B, C. So, this is one way of expressing the behaviour of a full adder; because here

you are not specifying what kind of gates to use; how many gates to be used and so, on;

we are just writing now on the expressions and we are telling that well this is your sum

and this is your carry; this will be the behavior, this is an example.
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Now, this is in terms of Boolean expression the same thing you can express in verilog as

follows well I have not talked about the syntax of verilog.

So, possibly this is your first look at a verilog program; let us see what it contains. The

syntax  is  some  more  similar  to  the  language  C;  here  every  statement  ends  with  a

semicolon. This is like a function in C; this is called the module. So, verilog program

will consist of one or more modulus. So, it starts with this keyword module; it ends with

end  module  this  is  this  module  is  followed  by  the  name  of  the  module  and  the

parameters. The parameters are well in terms of the hardware these are nothing but the

input and the output ports of that block.

Now for a full adder; the inputs are A, B, C and the outputs are carry out and sum. So,

this S; C y, A, B, C are the five parameters; we declare; A, B, C as input like this, input

A, B, C; output S; C y. So, that the cad tool will know that which are your input pins

input signals which are your output signals and there is a assign statement available in

verilog; here we are showing it using assign you can directly write down the Boolean

expression.

This hat is the expression for exclusive or this indicates xor. So, sum is A, xor B, xor C

and this amp person is end bar is or carries a B or B C or C A. So, you see in verilog you

can express Boolean expression; which is behavioural specification very concisely in this

way using the assign statement.
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So, this is one way to specify a behavioural specification in verilog.  Now, this same

design; the full adder I am showing only one of the output the carry, well just if we recall

the carry is nothing but A B or B C or C A.

(Refer Slide Time: 14:55)

So, you tell me when the carry will be 1? The carry will be 1 for several conditions of A,

B and C; when either A and B is 0, but C is; A B is 1, C is 0; A and C is 1; B is 0 or B and

C is 1; A is 0 or all these three are 1.



So, for these four cases my carry will be 1; for all other cases carry is 0. So, this I can

express or as a as a truth table. So, how do I express? Well I need not have to specify all

the rows; I can simply say that at least two must be 1; A B, A C or B C; at least two. If it

is 1; then the carry will be 1; this is what you are specify here you see; in this truth table.

So, this is again way to express a behavioural specification in verilog in terms of the

truth table. So, there is a keyword called primitive. So, we use this primitive keyword

here; so, I am only showing for carry. So, there are four parameters this is the output A,

B, C are the inputs. So, I declare the input and output signals. So, I use a keyword table;

so, here this is a comment just for showing that these are the values of A, B, C and this is

C y this is a comment line and just for convenience.

And the way you specify the input is you specify 0 or 1 and question mark means don’t

care and colon separates inputs and outputs. The first line says; if A and B there 1, but C

is don’t care; then carry is 1; like you see here I means if A and B are 1, C is 0 then also

carry will be 1, but if A and B are 1, C is 1; then also carries 1. So, actually C is a don’t

care; it does not depend on C. So, this we can write in a concise way using the don’t care

notation.

Similarly, if A and C are 1; B is don’t care or B and C are 1; A is don’t care; then also

carry will be 1. But on the other cases at least two of the inputs are 0; A B 0 or A C 0 or

B C 0; other is don’t care; then carry will be 0. So, you see; if we use don’t care then

instead of the eight rows of the truth table; here we require only six some of specification

may be shorter.
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Now, let us move on to structural specification; now let us structural specification as I

said that; it actually specifies how some modules are interconnected. So, when we say

that I am defining something in a structural way; which means I will have to specify the

modules  and I  will  also  have  to  tell  how their  actual  interconnected.  Let  us  see  an

example on this. So, earlier we mentioned that; this kind of structural representation is

also called the net list. And net list can be specified at various levels at a every high

functional level, gate level, transistor level and so, on.
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This will  see later slowly; so, structural level;  levels of abstraction is also we talked

about earlier I mention gate level, transistor level or can be hybrid design also.

Some of the blocks can be the gate levels, some of the blocks can be at higher level. So,

as  you  move  down;  more  and  more  details  I  revealed.  Like  net  list;  which  is  at  a

functional level; multiplexers, decoders, adders their number of blocks will be less. So,

as you move down to the gate level list; net list equivalent net list, number of gates will

be  much  larger.  As  you  move  down  again  to  a  transistor  level  net  list;  number  of

transistor shall be even larger. So, as you move down; your size of the net list will be

increasing gradually. Let us take an example to illustrate structural design.

(Refer Slide Time: 19:53)

Now, this is a circuit which you must be familiar with; this is a 4 bit ripple carry adder.

So, what we have done? Just to recall.  So, 4 bit  ripple carry adder consists of 4 full

adders. So, I want to add two numbers A 0, A 1, A 2, A 3 and B 0, B 1, B 2, B 3; they are

all 4 bit numbers. So, I feed the corresponding bits to the 4 full adders and C 0 is my

carry in. The carry out from the first full adder will be going as carry into the next carry

out from here you will go to the carrying of the next; similarly here and C 4 will be the

final carry out and S 0, S 1, S 2, S 3; will be the final sum. 

So,  if  you  look  inside  the  full  adders;  where  just  now sometime  back  we saw, the

behavioural specification of a full adder; we saw that there is a some part there is a carry

part, there will be one circuit which will be computing the sum; there can be another



circuit disjoint or sheared may be which will compute the carry. So, each full adder we

will consist of a sum circuit and a carry circuit.

(Refer Slide Time: 21:13)

So, conceptually speaking we show it like this. So, as if we have a 4 bit adder; we call it

as a 4 bit adder. 4 bit adder consists of 4 full adders add this is a full adders; each full

adder consists of a carry circuit and a sum circuit; carry circuit, sum circuit. So, this is

how we can describe a circuit in a hierarchical way and also structural way. Like every

adder will be a combination of carry and sum and this 4 bit adder will be a combination

of 4 full adders. Now, this carry on sum we already know these are the expressions. So,

let us see in verilog how we can do this.
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So, here I am showing the top level module of a 4 bit carry look at adder. So, here the

parameters has specified here; well here I am not going into the detail because all these

details we shall be explaining again later. I am just showing you; how this verilog code

looks like. Just one thing you see here; here I have declared x and y are the inputs and

this x and y input; I have declared as a vector 3 colon 0 means; it is a four bit number,

but the bits  are number from the most significant side, 3, 2, 1, 0; this is the way to

specify in verilog 3 colon 0.

Carrying in a single carry in; similarly output sum is also 4 bit; 3 to 0. See; we here let us

show here I mean say we have an adder, we have also defined a full adder; add is a full

adder. Full adder has parameters carry out sum and the three inputs. So, you see here in

the 4 bit ripple carry adder; I have made four copies of this full adder, this is called

instantiation.

Well in a C program; when you call a function. So, the control goes to the function; the

function gets executed and again we come back. But in terms of hardware; if I call a full

adder  four  times  it  means  I  am  using  four  copies  of  the  full  adder,  this  is  called

instantiation. So, here four copies of the full adder will be instantiated and I am giving

different names B 0, B 1, B 2, B 3 to the four copies and these parameters the way I have

given the name; this defines the interconnection.



Like here for example, for B 1 the carry out C I out 0 this will be C I out 0. So, this will

be connected to this say about 2; C out 1 will means for B 0, the carry out will  be

connected to the carry in of the next, for B 1 ; the carry out will be connected to the carry

in of the next for B 2 the carry out will be connected to a carry in of the next and so, on

because this is your carry in the last parameter. And here this is a high level design the

full adder also we have defined in a structural way, you have put a sum and a carry. Sum

is module; carries the model we have instantiated them.

(Refer Slide Time: 24:58)

And sum and carry similarly, can be described like this. So, I have defined this in a

structural way; not in a behavioural way you see, sum this A, B, C in the inputs; sum is

the output and t is a temporary wire.
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This xor is a gate; what does it t a b means? t a b means the first one is the output second

two are the inputs; which means that I have an xor gate for the output is t and the inputs

are A and B, the first line indicates this. Then next line indicates; there is another xor sum

sum is the output inputs as t and C y in. So, t is there this is another xor gate, this is

another input C y in and you generate sum. So, you actually specify this circuit; this is

structural  because  you  have  specified  two  gates  xor  gates  and  how  they  are

interconnected right. So, this is a structural description of a sum.

Now, these gates xor or for carry this and or these gates are already; there as a part of the

verilog  language.  So,  this  we  shall  be  studying  slowly.  So,  I  have  just  shown  you

example here just to show you how a verilog module looks like. So, in the carry block in

a similar way; we need four gates g 1, g 2, g 3; this will do a end of AB, end of A C and

end of B C and the outputs are t 1, t 2, t 3 and finally, you do a or of t 1; t 2; t 3.

And now you see the number of inputs to the gates you can vary like in the last case the

first one will be the output and the remaining three will be the inputs. So, this will be

automatically taken like this. 
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Now talking about the physical representation which is the lowest level; here as it said

that  when  you  finally,  fabricate  the  chips;  you  define  a  large  number  of  various

polygonal shapes; for the different layers of fabrication.

So,  these  are  this  specification  of  so  called  photo  masks  that  are  required  in  the

fabrication process. Now this 4 bit adder is the way we look at it; from the function or

the structural point of view, but from the physical point of view there will be a large

number of rectangles or polygons.

(Refer Slide Time: 27:48)



So, this also can be specified in verilog; I am just showing you an example this is not the

complete description, just a partial description for the adder. Like you can actually define

some coordinates 0, 35 is a coordinate; this is an aluminum wire of width one unit, this is

the poly silicon wire of width 2 units and so, on. So, in this way you can define various

wires  of  different  metals  or  materials  you  can  specify  the  widths  basically  there

rectangular shapes.

Rectangles  there  will  be  a  large  number  of  such rectangles  we will  define  you will

specification.  So, I am just showing you these primitives are also means available in

verilog. So, when you go down to the layout level; the same verilog language can be

used to specify your layout. This is what I meant by saying is that you have a hardware

description  language  and  as  the  process  of  synthesis  continues  you  transform;  one

version of verilog to another version of verilog, that another version of verilog to another

define  version  of  verilog  in  that  way  you  proceed  and  at  the  final  step  you  get  a

description which is your final layout description.

(Refer Slide Time: 29:09)

So,  just  a  quick  look  at  the  digital  IC  design  flow  once  more;  starting  from  the

specification  you  design  entry  or  this  may  be  your  specification  in  your  verilog  or

VHDL; logic synthesis and there are some steps were you are actually going for the

physical design; this is called physical design. You go for partitioning, floor planning,

placement routing steps like this.



And in the first steps; you go for design entry, logic synthesis, partitioning. This steps are

typically called front end design or logical design and these are called physical design or

back end design. And there is some feedback connection also because at some step; you

may find that it is not working properly do simulation, you may have to go back and

make some changes.

Like here also you can do some circuit extraction and simulation; you say that your delay

is not coming proper you may have to go back and make some changes. So, just a very

rough view of the whole process of design; front end design and back end design; this

entire process have to be traversed by a designer to actually design a circuit in terms of

the final layout description, starting from the behaviour.

So, with this we come to the end of the second lecture. Well, in this lecture we have

basically talked about design representations; the three ways you can visualize a design

and we have seen some examples in verilog; how verilog can be used to capture the

design at the different levels of abstraction; different views, behavioural structural and

physical.

Thank you.


