
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 10
Verilog Modeling Examples

So, if you recall the topics that we have discussed during our last few lectures, we have

talked about the various constructs of the Verilog language. We had looked at some of

the fundamental constructs, the operators, how we can frame the expressions for

evaluation and some of the operations we have defined for assignment. For example,

using the assign statement there are a few more, which will be discussing in the due

course of the lectures. But what we are trying to deal with in the present lecture is, we

shall take an example. And with the help of an example we shall try to illustrate a few

points and concepts which are considered to be good design practice when someone is

going about designing a digital system, using a hardware description language.

So, the topic of our lecture is Verilog Modeling Examples. Now actually what we trying

to do here let me try to explain this first. You have seen that when we model some

system using verilog broadly, there are 2 fundamental ways of doing it. So, we call it

behavioral and structural modeling.

(Refer Slide Time: 01:45)

You can do either using behavioral or using structural. Now in the example that I shall be

giving in this lecture, we shall be just elaborating on this further.

Now, just to tell you about when we talk about behavioral modeling what we are actually

doing. We are actually saying that how a system is working, we are not telling or talking

about how it is actually constructed or is to be constructed. We are saying that for

example, I have an adder this some output should be a x or b x or c, they carry output

should be a b or b c or c a. So, I am not telling that whether you will be using AND gate,

OR gate, NOR gate, or NAND gate, or XOR gate what or how you will be

interconnecting them.

So, if I say just the behavior either in the form of this expression or in the form of a truth

table let us say that is a so called behavioral expression which is much easier to do. So,

when you are designer when you have something in your head, in your mind you are

trying to design something. So, the first thing that you can write or start with is a

behavioral description of your model, or your thought process, what you are thinking

about. Now once you have thought about the behavior, now you can think about how you

can implement it.

Let us say, let us take that same example of a full adder. So, once you have thought about

what is the functionality of a full adder. Now you think about how you want to

implement it. Now you may see that. Well, I want to implement it using a technology

where you have only NAND gates. So, let us not use AND, OR, or NOT operation. So,

all the AND, OR, NOT whatever is there we will be translating them using demorgans

law using NAND operations only and we will be implementing it using NAND; so just

in this diagram.

So, as I had said behavioral description is often the starting point, because it is easier to

write a verilog module in the behavioral model, but structural description this is more

with respect to hardware implementation. Like here I can say that well to implement the

carry output of the full adder, let us say to implement carry I need a I will say that I will

need 4 NAND gates let us say. And I will also tell how the NAND gates are

interconnected I will say that well you interconnect the NAND gates like this there will

be 3 2 input NAND gates and 1 3 input NAND gate this will be a b b c and c a and this

will be your final carry output.

So, this is; what is your structural representation you specify some modules and you also

tell how they are interconnected. Now obviously, this is much more detailed. So, when

you are thinking of the behavior you have not yet thought about these gates and how they

are interconnected. So, there will be a process that you will have to go through that from

behavioral to structural you will have to make a translation right. So, the normal

designed process is that we start with a behavioral description now in our behavioral

description our total description may consist of 1 or may be multiple modules.

Let say 1 we systematically try to convert them into structural descriptions that can be

several steps I shall take 1 example and I will show you that how you can use several

steps in the translation, and how you can carry out some kind of a hierarchical design

process in order to achieve it at the end of which you will be having a number of

modules all of which are specified in a structural description. So, you have a total design

which is a structural description of a system you want to built.

So, from behavioral to structural this is normally the step which many people follow. So,

we shall be taking the example of a.

(Refer Slide Time: 06:58)

16-to-1 multiplexer and illustrate some of the points I have just discussed with respect to

this 16 to 1 multiplexer you know what a 16 to 1 multiplexer is.

(Refer Slide Time: 07:19)

So, a multiplexer has a number of input lines a single output line and a number of select

lines. So, when I say a 16 to 1 multiplexer. So, there will be 16 input lines, there will be 1

output line, and to select 1 of the input lines there will be 4 select lines.

So, the rule is number of select lines is given by log to the base 2 of the number of input

lines. Here input lines is 16. So, log to the base of 16 will be 4 right. So, we are trying to

design such a multiplexer. So, to start with, we shall be giving the behavior. So, I am just

showing you in this list that how we shall be proceeding with our design. So, in the first

step, we shall be using pure behavioral modeling which we shall see, will be rather

simple specifying the behavior of a 16 to 1 multiplexer is very easy.

Then we shall be implementing the 16 to 1 multiplexer using several 4 to 1 multiplexers.

So, we will be using structural description of this 16 to 1 mux, using 4 to 1 multiplexers,

but the 4 to 1 multiplexers will still specify, using behavioral model. Then we shall be

implementing the 4 to 1 marks using 2 to 1 marks, and we will be using still behavioral

model of 2 to 1 marks. And finally, we will be specifying these 2 to 1 marks, also in the

structural get level form. So, that we have a complete hierarchical structural description.

So, let us see. So, as we proceed with this example, these steps will be clear. So, we start

with pure behavioral modeling.

(Refer Slide Time: 09:43)

Very simple, this is the complete Verilog model for a 16 to 1 marks, you see for a

multiplex, as I had said, there are 3 parameters, this in and cell are the input lines and the

select lines. So, in a 16 bits, select lines is 4 bits and out is a single bit output.

So, you can specify the behavior of the multiplexer using the single statement out equal

to in, within square bracket cell. You see here as if we are accessing 1 element of an

array, the input lines there are 16 of them, you imagine the input in as consisting of a 16

bit array, where the index values will be 0 1 2 up to 15, and the select lines that you are

using 4 bit select line. So, in 4 bits what will be the values if the value can range from 0

up to 15. So, if I can use this select line as the index of the array. So, I will be selecting

that particular element, and I will be sending it to the output; that is what a multiplexer

does. So, you see here we have selected a particular bit of this input vector in which bit,

the bits specified by cell and that particular bit we are storing in out, this is your

multiplexer.

So, let us, with this we have done a behavioral modeling of this multiplexor. Now how

do we test it, whether it is working correctly or not we, sorry write a test bench, just go

back we have a module like this mux 16 to 1 for the 3 parameters input, select and

output, and now just we want to verify it is operation through simulation, and you have

written.

(Refer Slide Time: 12:03)

A test bench for it; so what is our test bench looking like, it is, here we have instantiated

our multiplexer mux 16 to 1. You see this was mux 16 to 1 the parameter names are in

cell and out. So, we have using this notation to specify the parameters dot in dot cell, dot

out. and in this module the corresponding variables are a s and f, and in order to express

the data types you specify a and s as reg, because they will be appearing on the left hand

side, they have to, of type reg, and f is of type wire, these a is 16 bit s is 4 bit.

So, the test bench what I have doing. you recall will be just looking more formal into the

constructs of a test bench later, but let us illustrate with examples, this initial block I am

repeating, this means the we execute this begin end block only once; that is a purpose of

the test bench, you will be testing your module once, whatever you have specified those

values will be applying to the inputs, and you will seeing what the outputs are coming;

that is the purpose of the test bench.

So, just ignore the first 2 lines once more, we will again come back and explain this once

more. Well, this line monitor we are monitoring a few of the variables. Dollar time is a

system variable that indicates the simulation time, and then in a c like notation we are

saying, that we want to print the values of a s and f h is a hexadecimal specifier, because

a is a 16 bit number, I specify percentage h s is also a 4 bit number percentage h and f is

a single bit, I give it b, b means binary, monitor means whenever any of the variables a s

or f changes then only you print. You do not print at every time 1 2 3 4, do not

continuously go on printing. So, whenever there is a change, then only you print; that is

the purpose of this monitor statement.

Now, I specify the inputs. So, what I am saying is, that at time 5 I apply hexadecimal

value 16 bit hexadecimal h 3F0A.

(Refer Slide Time: 14:56)

So, let us write down here also 3F0A. What does 3F0A mean? Let us write it down 3

means 0 0 1 1, f is 1 1 1 1 0 is 0 0 0 0, a is 1 0 1 0, these 16 bits. Now if you talk about

the index values 3F0A. So, index values will be 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 and

15, these will be the index value. So, if you think of a multiplexers. So, these input this

3F0A you are applying here, and you are applying this select line, and you are getting the

output f here right. So, select line means selecting 1 of these bits and that bit will come

out right.

Now, at time 5 we are selecting what 0 we are applying all 0 to s. So, let us see what will

happen. So, if we apply select line as 0, which mean this 0 will be selected. So, what will

be getting, you will be getting this 0 as the output right, and this will happen at time 5

right. At time 5 next in the test bench what we do. Well, once we wait for another time 5

after delay of 5 again, we set s 2 1 4 hexadecimal value is 1. So, now, s is becoming 1.

So, what will be the value 1. Now the bit is this 1.

So, this 1 will be now output it, and this will happen at time 10, because we are having

another delay of 5 you. Next look at you have another delay of 5. Now you apply s equal

to 6. So, what is your 6 s is 6, 6 is here. So, this is 0. So, you will be getting a this value

0. now this will happen at time 15 and the last 1 you apply s equal to c c means 12 1 1 0

0 right. In hexadecimal s equal to c c means 12. 12 means you, here this is one this will

happen at time 20 right, and at the end you finish after another time 5, you finish this

simulation.

So, I means if I create this two files and I told you earlier that you can use any of the

simulators to simulate these, and I had suggested to use the ivory log 1, which is very

easy and just freely available. So, here in the examples that I am showing, I have used

ivory log and GTK wave to show you the simulation outputs. So, if I just simulate it

using ivory log. So, I get an output as is shown in the window here, this blue box, see

exactly what I have shown here, this same thing is happening. See at time 5 0 is coming

at time 10, 1 is coming at time 15, 0 is coming at time 20, 1 is coming you see the first

value; that is printed in the monitor, is time at value of 5 output is f 0, 10 output is 1, 15

output is 0, 20 output is 1.

So, I have also printed the values of a and s for your reference a, and also s. Now initially

at time 0 when this simulation starts; so a is not initialized, s is not initialized, f is not

initialized. So, all of them are showing x right. So, you see just from the behavioral

specification you can do a simulation, and you can get the simulation result like this.

Now the first two lines in the initial statement I am repeating this. I have mentioned this

earlier, also see these variations with time these information you can also dump into a

file VCD. So, here I am giving a name mux 16 to 1 VCD, value change dump file, they

will all be dumped in the file, and I can specify which variables I want to dump.

Well, 0 comma followed by the name of this module, means that all the variables in this

module, and all the variables which are instantiated, inside those modules, everything

will be dumped. We shall see what are the other options later in dump facts but here you

are dumping all the variables. Now you can ask that, well I can see all the simulation

output like this, why do I need to use this dump file, and dump vars. the thing is that,

well seeing the simulation output in a tabular form or a just on the screen is not good

enough in the form of a text, well means often were digital circuits we want to look at the

timing diagrams, how the values are changing at what times and so on.

So, there is a tool I mentioned about GTKOF you can use the GTKOF tool to view this

file, and since I have dumped it with the name, you can just give a name GTKOF this

particular file name, and it will show you a simulation result in the form of o f form like

this.

(Refer Slide Time: 21:12)

So, you see the font size are little small, but you can decode, see on top, the time is

mentioned just going back at time 5, the values are starting to change right. So, you see

this is 7, this is 14 20 1. So, 5 is here, this is our in select and out. So, in was initially x x

x x select was out, select was x out was also x. So, it starts getting selected here; 3F0A.

this is the value you have applied, select initially you have applied 0. So, the output you

are getting 0 0 level, then select you have given 1. So, output has given 1 then select, you

have given 6 output has again become 0, then you have given c output is become 1.

So, exactly what you are seen here in the tabular form, the same thing is being shown

here in a graphical form in the form of a o f form. So, it is sometimes much easier to

view it on o f form. If it is a quite a complex circuit, and the signals are means more

complex and interacting. Now the thing is that, I have shown a very simple behavioral

description of a multiplexes x into 1. I have shown how to write a test bench, and I am

shown you the simulation results. Now, what I will do. I will proceed with our so called

hierarchical refinement. We shall be modifying our module description, but we shall be

keeping our test bench the same. We shall not be touching our test bench. We shall be

making modifications.

We shall be again running the same test bench, and verify whether the simulation results

that you are getting is exactly the same as what we got here, that should be. So, because

it should the result should confirm to a 16 to 1 mux only this you should verify at every

step fine.

(Refer Slide Time: 23:28)

So, we come with the version 2. Now what you do? See in version 1 we did something

like this, we had a mux 16 to 1. Now here what we are doing. This is our mux 16 to 1

description. So, here before explaining this let me show you this diagram.

(Refer Slide Time: 23:51)

We are implementing a 16 to 1 multiplexer by using 5 4 to 1 multiplexers. So, in the first

level there are 4 of them. So, the 16 input lines are broken up into 4 each 0 to 3 4 to 7 8

to 11 12 to 15 and in the second level the output of these multiplexers are feeding the

input of this, and among the 4 select lines, the least significant 2 select lines are applied

here in this levels sel 0 and sel 1 and the high order bits are applied here.

So, this is how we built a 16 to 1 mux using 4 to 1 mux. There is a standard design I am

not explaining this. These are available in textbooks. Now actually in the description that

I will show, we shall be instantiating the 4 to 1 mux 5 times with the interconnections

like this. The intermediate lines are t 0 t 1 t 2 p t 3. You see you have exactly that. So,

this is the mux 16 to 1 description input output and we have defined this wire t t 0 t 1 t 2 t

3.

So, this 5 multiplexers we have instantiated just check for m 0. We have in 3 2 0 and

select 1 2 0 output is t 0. Let us see for m 0 input is in 3 2 0 in select our sel 0 and sel 1

and output is t 0 something. Similarly m 1 m 2 m 3, and finally m 4 the input is t, you see

input is t t 0 t 1 t 2 t 3 you can simply write t, it is a vector the high order bits of sel 3 and

2 are the select lines and out. So, this is your structural representation of this 16 to 1 mux

in terms of 4 to 1 mux, but this 4 to 1 mux I am still describing in a behavioral fashion 3

2 0 same statement 4 to 1 mux.

So, this you can check. I am not showing the web form if you modify your design like

this, and if you run your simulation you will be getting the same simulation output, same

behavior as you have seen earlier for a full behavioral description of a 16 to 1 mux. So,

this is our version 2, which can be checked to work in the same way. Next we proceed 1

step further. Here we have used 4 to 1 muxes right. Here we have used 4 to 1 muxes, and

our 4 to 1 mux was behavioral.

(Refer Slide Time: 26:47)

Now we are refining the definition of 4 to 1 mux. We are implementing a 4 to 1 mux

using 2 to 1 muxes; like this using 3 2 to 1 multiplexers you can implement a 4 to 1

multiplexer.

(Refer Slide Time: 26:54)

So, 2 and 2 inputs get here the least significant, select line will be here most significant

select line will be here.

So, that way same way mux 4 to 1 I can use by instantiating 3 copies of mux 2 to 1.

These correspondences you can check, but again this mux 2 to 1. I am still defining in a

behavioral fashion 2 to 1 mux, I have just defined it like this, where select is a 1 bit and

input is 2 bits. So, I proceed like this. So, at the last step I have the smallest multiplexer

left with me, 2 to 1 this I can.

(Refer Slide Time: 27:49)

Straight away implement it using structural fashion. So, a multiplexer, how does, means

how do we implement a 2 to 1 mux.

(Refer Slide Time: 28:02)

The red 2 inputs 1 input and a select line, let us say the inputs are in 0 and in 1 this is sel

and the output is out. So, the why you can implement it is like this, you can take 2 AND

gates and an OR gate, this in 0 can be connected here, this in 1 can be connected here,

and this sel you can connect directly here, and through an inverter here. So, when select

is 0, this will be 1, this, in 0 will come out and when sel is 1 this will be 0, and this will

be 1, this in 1 will be selected in 1 will be coming out right. So, these are 4 gates. So, we

specify this structural description for the multiplexer, this is what we have described

here, a not gate 2 AND gates and a OR gate.

So, whatever we have shown here is the typical design flow of a designer. So, when a

designer goes about designing a complex digital system. Well I have shown a relatively

very simple example so that you can appreciate just a multiplexer I have shown that we

start with using a behavioral description.

Then step by step hierarchically, we break it up into structural representation at various

levels, and when you are done. We have all the hierarchical descriptions all described in

the structural level, and what we have the overall design is a complete structural design.

So, I strongly recommend that you should try out these examples yourself, run them on a

simulator view the o f forms on GTK wave or any other tool that you have accessed to,

and you get a feel of this simulation and the feel of the design.

So, we shall be continuing with some more examples in our next lectures again.

Thank you.

