
Data Communications

Prof. A. Pal

Department of Computer Science & Engineering

Indian Institute of Technology, Kharagpur

Lecture-15

Error Detection and Correction

Hello viewers welcome to today’s lecture on Error Detection and Correction. We have

discussed various issues related to transmission of signal through different transmission

media. We have seen that when signal is sent through some transmission media it is

subjected to attenuation distortion and noise as a result some of the bits of the data or the

signal gets corrupted. In other words it leads to some error in sending data. But we want

reliable communication. So through the unreliable media if we want reliable

communication what we have to do. We have to device mechanism for correcting the

error that occurs during transmission through the transmission media and that is the topic

of today’s lecture.

So here is the outline of the lecture. First we shall discuss why error detection and

correction, then the various types of error that can occur during transmission, third topic

will be error detection techniques.

(Refer Slide Time: 2:20)

We shall discuss various error detection techniques such as parity check, two dimensional

parity check, checksum, Cyclic Redundancy Check etc. These are the commonly used

error detection techniques. Finally we shall discuss error correcting codes which can be

used not only to detect error but to correct error if it occurs during transmission.

And on completion of this lecture the students will be able to explain the need for error

detection and correction, they will be able to state how simple parity check can be used to

detect error, they will be able to explain how two dimensional parity check extends error

detection capability because as we shall see simple error detection or simple parity check

cannot detect all possible errors but only some of the errors are detected.

(Refer Slide Time: 3:03)

So to extend the capability two dimensional parity check is used and that the students will

be able to explain. then they will be able to state how checksum is used to detect error

this is another scheme they will be able to state then they will be able to explain how

Cyclic Redundancy Check works. Finally the students will be able to explain how

hamming code is used not only to detect error but correct error.

So we start with why error detection and correction. As I mentioned because of

attenuation, distortion, noise, interferences some errors will occur and this will lead to

corruption of some of the transmitted bits. And particularly two parameters which are

important in the context of error is your frame size and second is the probability of

single-bit error.

Obviously if the transmission media is noisy the probability of single-bit error will be

more and when we are sending data in the form of a frame the size of the frame will also

decide the probability of error of a frame. That means two important parameters such as

frame size and single-bit error will decide whether we are receiving a frame with error or

without error. This can be proved mathematically longer the frame size and higher the

probability of single-bit error lower is the probability of receiving frame without error.

(Refer Slide Time: 5:01)

That means the probability of receiving a frame without error increases with the size of

the frame and also as the probability of a single-bit error increases. This is quite obvious.

If the frame size is long say if you have got a long sequence of zeroes and ones then if

one of the bits get corrupted then the entire frame will be in error. So, this clearly

emphasizes the need for error detection and error correction. If we want to communicate

in a reliable manner then we have to device a scheme so that the error which is inevitable

can be corrected. Let us look at the various schemes but before we look at the various

schemes let us see the types of error.

(Refer Slide Time: 7:06)

First one is single-bit error. Suppose you are sending a bit sequence may be a character 1

0 1 1 0 0 1 a 7-bit say ASCII code one of the bits may get corrupted and it may become 1

0 1 0 0 0 1. That means this corresponds to a particular character (Refer Slide Time: 6:28)

and at the receiver this has been transmitted and this will be received by the receiver and

obviously the received character is different from the transmitted character. This has

occurred due to single-bit error so this is called single-bit error and this is very common

in parallel transmission.

Suppose you are sending eight bit simultaneously using eight lines so using eight lines

you are sending and whenever you are sending eight bits then one of the line may be

faulty suppose this is faulty (Refer Slide Time: 7:17) whenever a particular line is faulty

obviously the signal coming through this line will be in error. On the other hand signals

coming through other lines may not be in error and as a result this will lead to a single-bit

error if a particular line is faulty. This is how single-bit error occurs particularly in

parallel transmission.

Then there is another type of error which is known as burst error. Burst error occurs

whenever more than one bit gets corrupted. Suppose you are sending a long sequence 1 0

1 1 0 0 1 0 1 and so on then what can happen is the duration of noise is longer than the

duration of one bit. suppose duration of noise is this much this is the duration of noise

(Refer Slide Time: 8:05) so duration of noise is covering four bits so there is a possibility

that some of this bits say this becomes 0 this becomes 1 this remains 0 this becomes 1 so

it is not necessary that all the bits will get corrupted so out of these four bits the three bits

have got corrupted leading to this signal at the receiving end.

This is essentially multiple bit error and we call it burst error because a burst in noise is

responsible for this kind of error. This is very common in serial transmission. Whenever

you are transmitting serially then during transmission the transmission line may be

exposed to some noise may be switching on some electrical equipment or some other

electric disturbances like it may be due to lightening because of bad weather and so on.

So because of any one of this reasons multiple bits get corrupted because of the duration

of noise is longer than one bit and this is the burst error. So we have to develop technique

for detecting not only single-bit error but multiple errors including burst error.

What are the techniques and how it is being done?

(Refer Slide Time: 10:50)

The basic approach is use of redundancy. Suppose this is your message the message may

comprise several bits in sequence and with that some additional bits are used known as

Frame Check Sequence FCS. This Frame Check Sequence is added with that additional

bit and then sent over the transmission line. So these are the additional bits (Refer Slide

Time: 10:05) which you may call redundancy incorporated in the message and that is

being sent and these additional bits can be used for not only detecting error but for

correction of error. That is the basic mechanism of error detection and correction.

Obviously this FCS is a function of M so FCS will be dependent on this message. So

based on this message bit this Frame Check Sequence is calculated and then it is sent and

these together are sent to the receiver and they are using this Frame Check Sequence and

message bits and by this the error detection and correction is done. We shall see how

exactly it is being done.

The popular techniques are simple parity check where single-bit is added, then to enhance

the performance two dimensional parity check is commonly used and the third technique

we shall discuss is checksum which adds several bits to detect error and error detection

capability is better than simple parity check when compared to two dimensional parity

check. Finally we shall discuss Cyclic Redundancy Check which is very popular in

common and possibly this is the most sophisticated technique used for error detection.

We shall discuss these techniques one after the other.

(Refer Slide Time: 11:31)

 As i mentioned the parity check is the simplest and the most popular error detection

scheme. What it does is it appends a parity bit to the end of the data. Suppose you are

sending a character say 1 0 1 1 0 0 1 so 7-bit now you can add a parity bit and that parity

bit is added based on whether you are using even parity or odd parity. If you are using

even parity then including that bit the number of ones should be even. So here you have

got 1 2 3 and 4 ones so this is made 0 whenever you are using even parity so that the total

number of bits in the message that is being sent including parity is even.

On the other hand if we are using odd parity then it will be 1 0 1 1 0 0 1 1. So instead of 0

1 is added so that the number of ones is odd so this is the odd parity. Particularly as we

have discussed the asynchronous and synchronous mode of transmission in asynchronous

mode commonly the odd parity is used and in synchronous mode of transmission

normally the even parity is used so both are in use. Let’s see how it is exactly being done.

So this is the basic scheme of parity check. Here it is based on even parity as it is shown

here.

(Refer Slide Time: 13:10)

So this is the data 1 0 1 1 0 1 1 that is being sent and the parity is calculated using very

simple hardware using Exclusive OR Ex-OR gate for computing the parity bit and as you

can see here you have got odd number of ones in the message so another one is added as

parity bit to make the number of ones even. So these data bits along with this parity bit

are sent through the transmission media and it reaches the receiving end. In the receiving

the parity bit is computed. That means here all the bits are used to check whether the

number of ones is even or not.

If it is even then you accept the data because it is the correct one and on the other hand if

the number of bits is odd then you have to reject the data. In that case some error has

occurred leading to single-bit error. So in that case you have to reject the data at the

receiving end. This is the basic scheme of using the parity check. Obviously to compute

the parity bit you can use Exclusive OR gates in both cases. This is the performance of

simple parity check scheme.

 (Refer Slide Time: 15:03)

Here all single-bit errors are detected and it can detect all the single-bit errors and also it

can detect burst errors. However, this can detect burst errors only when the number of

bits in error is odd. Obviously when the number of bits in error is even then if it is 0 it

becomes 1, if another one is 1 it becomes 0 leading to the same parity bit. That’s why

whenever even number of bits is corrupted then this simple parity check cannot detect the

error. So we find that this technique is not foolproof against burst errors that inverts more

than one bit. Particularly if the even number of bits is inverted due to error the error

cannot be detected by using this simple parity check scheme.

(Refer Slide Time: 16:05)

To overcome this limitation we can use two dimensional parity check. In two

dimensional parity check the performance is improved by using more number of bits that

means more redundancy. Here the data is recognized in blocks of bits in the form of a

table. So here since it is organized in a form of a table, it takes the shape of a two

dimensional data and parity check bits are calculated for each row which is equivalent to

simple parity check bits. For each row there is a parity bit and parity check bits are also

calculated for all columns. So you have parity check for each of the rows and parity

check bit for each of the columns and then both are sent along with the data and at the

receiving end these are compared with the parity bits calculated on the received data.

 (Refer Slide Time: 16:47)

So let us take up an example and see how it exactly works. This is the original data. Here

the entire data has been divided into four segments or blocks then they are organized in

the form of a table so here you have got four rows corresponding to each segment or

block then for this particular row the even parity is calculated so you can see here the

total number of bits is even including the parity bit so in this way for each of these rows

the parity bits are calculated and then for each of these columns also the parity bits are

calculated and even parity is added at the bottom.

So, for each of these columns you can see the total number of ones you will find even

because this is the even parity. Then for parity bits also the parity bit is calculated which

makes the total number of parity bits. So we find that we send four segments of data each

eight bit. That means thirty two bits is to be sent and to send that the total number of

additional bits is now nine bits in each block and you have got five blocks so nine into

five that means forty five bits. So you see here that in simple parity check only one

additional bit is needed but here the number of additional bits is increasing. In other

words the overhead is much more than the simple parity check. Obviously this is done to

achieve better performance.

(Refer Slide Time: 18:53)

So the extra overhead is traded for better error detection capability. How? For example, it

can detect not only the odd number of bits but also it significantly improves the error

detection capability compared to simple parity check. it can detect most of the vast errors

but obviously it cannot detect all. Let us take up that example. Here suppose these two

even number of bits get altered and here also these two bits get altered so four bits get

altered. Now, if only these two bits get altered then this column parity bits can be used to

detect error. However, in this column in row one these two bits get altered and in the

same column these two bits get altered then the parity bits here remain unaltered. As a

consequence error detection is possible. That’s why all the burst errors cannot be

detected. However, it detects most of the burst errors.

Now let us see the third scheme that is based on checksum. In checksum at the sender’s

end again the data is divided into k segments each of m-bits. So just like the two

dimensional parity bit here also data is divided in segments. in this example we have

taken up the same example as you have shown for two dimensional parity bit so you have

got four segments k is equal to 4 each of eight bits m-bits.

(Refer Slide Time: 20:38)

Now the segments are added using ones complement arithmetic to get the sum. You may

be familiar with ones complement arithmetic. Here what is done is here the addition is

done for each pair of the segments one after the other and as we know whenever there is

an end around carry it is added with the least significant bit to get the sum. So this is the

partial sum by adding first two segments then the third segment is added and here there is

no end around carry so this is the partial sum then the fourth segment is added and here

we find there is end around carry so it is added so in this way we get this partial sum 1 0

0 0 1 1 1 1. This partial sum is now complemented to get the checksum. So here we get

the checksum 0 1 1 1 0 0 0 0. So this checksum is sent along with the four segments. So

what we are doing here is along with the data segments we are sending a message

segment equal to m-bits. These are now received at the receiving end and the checking is

done in this manner. All the received segments are added using ones complement

arithmetic to get the sum.

 (Refer Slide Time: 22:54)

As you can see here the first part is the same as the previous case. We have assumed here

that no error has taken place so first two segments are added to get this partial sum then

the third segment is added to get this partial sum then the fourth segment is added to get

this partial sum and then the additional segment which is essentially the checksum-bits

are added to get this partial sum. Now the sum is complemented and if the result is all 0

then it is assumed that no error has taken place and conclusion is accept data. So, if it is

all not 0 then this data is not accepted and it is considered that some errors occurred in

anyone of these bits.

(Refer Slide Time: 23:52)

Let’s see the performance of checksum. Like single parity or two dimensional parity it

can detect all errors involving odd number of bits. So here the performance is same as the

simple parity check. However, it can detect most of the errors involving even number of

bits. That means the burst errors can also be detected and whenever the number of errors

is even in most of the cases it can be done but not in all cases. So we find that the

performance of checksum is comparable to that of two dimensional parity check but the

overhead is little less.

As you can see here (Refer Slide Time: 24:07) overhead is lesser than the two

dimensional parity check. Here we are sending for 32 bit so here the data was 32 bit so it

is 32 bit plus 8 bit that means it is 40 compared to 45 in case of two dimensional parity

check. So in this case we have some extra overhead but less than the two dimensional

parity check.

(Refer Slide Time: 24:53)

Now let us come to the fourth scheme and the final scheme for error detection that is the

Cyclic Redundancy Check. The Cyclic Redundancy Check is possibly one of the most

powerful and commonly used error detecting codes. We shall see why it is so. We shall

see that Cyclic Redundancy Check gives you the best performance in terms of the error

detection quality. The basic approach is given here.

Given a m-bit block of bit sequence the sender generates an n-bit sequence and additional

bits known as Frame Check Sequence FCS. So for each of m-bits if your block of data

sequence is m-bits then additional n-bits sequence is calculated based on some scheme so

that the resulting frame consisting of m plus n-bits is exactly divisible by some

predetermined number. Here is the most important part of the story. We are using a

predetermined number and this is a very carefully chosen predetermined number which is

used to generate this n-bit and as we shall see this bit is generated by division. The parity

check and the checksum uses the addition. Here we shall see we are using division to

generate the Frame Check Sequence. So the receiver divides the incoming frame by that

number and if there is no remainder it assumes that there was no error. So let’s see how it

is being done. So here you have got the data of m-bits then additional 0s are concatenated

with it so (Refer Slide Time: 26:50) this is divided by n plus 1 bit divisor.

(Refer Slide Time: 26:51)

This is the carefully chosen n-bit sequence which is used as divisor to divide the m plus

n-bit sequence and it gives you n-bit data. As you know whenever you divide a number

by n plus 1 bit we get the reminder of n-bits and that n-bit is used as CRC or the Cyclic

Redundancy Check bits. These n zeroes are replaced by CRC to get the data so this is

what is being transmitted to the transmission media. So, through the transmission media

that is sent at the receiving end the receiver receives m plus n-bits data plus CRC and it is

again divided by the same divisor so the divisor has to be same in both cases both at the

transmitting and the receiving end and after division it generates a reminder and if the

reminder is 0 then the data is accepted as correct data and if it is not 0 then it is rejected.

So we find that at the receiving end as well as in the transmitting end division is

performed to generate CRC and also to check whether the received data including CRC is

correct or not and then it is accepted or rejected based on whether the reminder is 0 or

not. This division is based on Modulo-2 arithmetic and how it is done it is shown with

this example.

(Refer Slide Time: 28:38)

So here it is assumed that data is of only four bits 1 0 1 0 and divisor is 1 0 1 1. Although

I have shown here four bits for simplicity the data length can be 8-bit, 16-bit or even

much longer and as we have seen then the divisor is n plus 1 bits so n zeroes are added

with it 1 0 1 0 then 0 0 0 so this is being divided by this divisor. This division process is

simple this is the partial quotient so since this is 1 so 1 0 1 1 then-bit by bit Exclusive OR

operation is performed to get this remainder (Refer Slide Time: 29:25).

So one bit is excluded because the remainder has to be n-bit so 0 0 1 and this comes from

this bit and again it is divided and since this quotient bit is 0 so it is 0 0 0 0 here and again

Exclusive OR operation is performed to get this 0 1 0 0 and this comes here again this is

divided to get the quotient bit 0 and after Modulo-2 arithmetic we get the 1 0 0 then this 0

comes (Refer Slide Time: 30:02) and finally the quotient is 1 0 1 1 so you get 1 0 1 1 and

by Modulo-2 arithmetic we get the remainder 0 1 1 and the quotient 1 0 0 1.

(Refer Slide Time: 30:22)

So this remainder as we know is used as CRC to give you the data to be sent. So here we

get the data plus the CRC. This is the CRC and here we can see how it is generated by

Modulo-2 division (Refer Slide Time: 30:24). So this data and CRC is sent to the

transmitting end and at the transmitting end in place of 1 0 1 0 0 0 0 this 1 0 1 0 0 1 1 is

divided by 1 0 1 1. And you will find that if we do the division in the same way the

remainder will be 0 0 0 so this is how Modulo-2 arithmetic division is performed to

generate the CRC by the transmitter and to check whether the received data is correct or

not at the receiving end.

(Refer Slide Time: 32:13)

Actually the same approach can be expressed in a different way. The 1 0 sequence can be

represented or quite often it is represented by a polynomial. So here we find a bit

sequence 1 1 0 0 1 can be represented as a polynomial of a dummy variable x. So this

corresponds to the bit x to the power 0 so this is 1, this corresponds to the bit x to the

power 1 (Refer Slide Time: 31:46) and since it is 0 it does not appear in the polynomial,

this bit is also 0 it does not appear in the polynomial then this corresponds to x to the

power 3 so this is present here then this bit corresponds to x to the power 4 so

corresponding to each of these ones there is a factor in the polynomial.

On the other hand the zeroes do not give you any factor in the polynomial. So we find

that this is a more concise way of representing the bit sequence and particularly the

division operation can be expressed as…….. that means the message which comprises of

m-bits so that means comprising m-bits whenever you multiply x to the power n this

becomes m plus n-bits and that is being divided by standard polynomial known as

characteristic polynomial P(X) where we get a remainder and that remainder is used as

the CRC check bits.

There are some standard polynomials based on some strong mathematical property where

these are used for the purpose of generating CRC check bits. For example, CRC-16 is

commonly used in ATM and it has got some other applications. Here this has the degree

of 16 but only four factors are here as you see; x to the power 16, x to the power 15, x

power 2 plus 1. That means the remaining bits are 0 CRC, CCITT is used in many

applications, this is also 16-bit but it has also got four factors and it is based on that it

should not be divisible by x and it should be divisible by x plus 1 so these are the two

minimum properties that is being satisfied and based on that these are generated. And

there is another polynomial x to the power 32 bit and x to the power 16 and so on. So we

see this is a concise way of representing the bit sequence in the form of a polynomial of

dummy variable x.

(Refer Slide Time: 34:30)

Now how do you really perform the division?

I have shown how the division can be done manually. Question arises how the machine

will do it both at the transmitting and at the receiving end. This can be done with a help

of hardware which is known as Linear Feedback Shift Register or in short LFSR. there is

a shift register with some feedback which are used and this Linear Feedback Shift

Register can be used to generate the Frame Check Sequence or the CRC and also at the

receiving end it can be used for checking whether the received information is correct or

not. The Linear Feedback Shift Register will have n number of flip-flops at most n Ex

OR gates. The number of Ex OR gates can be less but the number of flip-flop will be

exactly n and the LFSR divides a message polynomial by a suitably chosen divisor

polynomial. The divisor polynomial is of degree n. then the LFSR will have n flip-flops

and the remainder will constitute n-bit which is the Frame Check Sequence. Let us see

how exactly it is done.

(Refer Slide Time: 36:35)

This is a simple characteristic polynomial of degree 3. Since it is of degree 3 obviously

the number of flip-flops will be 3 that is 1 2 3 C0 C1 C2 so there are three flip-flops and

here we find two Exclusive gates are used in the feedback path corresponding to x1 and

x0 and x3 is the feedback then there is no need for another Exclusive OR gate so two

Exclusive OR gates and these three flip-flops will make the necessary hardware for

performing the polynomial division. let’s see how exactly it can be done.

This is the initial condition (Refer Slide Time: 36:59) where these flip-flops are

initialized with the value 0 0 0 so C0 C1 and C2 all bits are reset, these are reset pins these

are reset initially and as you can see the input here is 1 so the input to this flip-flop is 1 on

the other hand this bit is 0 and this bit is also 0 so input to this flip-flop is 0. That means

input to this and input to this flip-flop is given here on this column and this column and

since this output is directly connected this C1 output is directly connected to the input of

C2.

On the other hand to C0 C2 Exclusive OR input bit is applied and to C1 C0 Exclusive OR

C2 bit is applied. So after we apply one clock whatever is here will be latched into this

flip-flop and whatever is here will be latched into this flip-flop and the output of C2 will

be latched into C2. So let us apply one clock and see how it happens. Therefore this C1

will come here, C0 will come here and this C1 will come here after applying one clock

(Refer Slide Time: 38:15) next we apply another clock and we find that this 0 will come

here, this 1 will come here and this 0 will come here so in this way we have to apply

seven clocks because we have got 7-bits so each of them has to be fed into….., in the step

3 again this 1 comes here, 0 comes here and 1 comes here and in step four same way this

1 comes here, 0 comes here and this 0 comes here, in step 5 again this 0 comes here this 1

comes here and this 0 comes here and these inputs are already fed and then finally these

seven inputs are fed. So, this 0 comes here, this 0 comes here and this 1 comes here and

finally we have to apply another clock to get the final CRC. So seven clocks are to be

applied 1 2 3 4 5 6 7.

(Refer Slide Time: 39:12)

So after applying seven clocks we get the result in this C0 C1 and C2 and indeed this is the

CRC 0 1 1 so data to be sent is 1 0 1 0 0 1 1 that means these three 0s are replaced by 0 0

1 and we get 1 0 1 0 0 0 1 this is the data to be sent. Now at the receiving end instead of

applying 1 0 1 0 0 0 0 the receiver will apply this 1 0 1 0 0 1 1 to this Linear Feedback

Shift Register and again they will apply seven clocks and at the end you will see that

result will be 0 1 1 if no error has occurred and if any error occurs then of course the

remainder will not be 0 0 0 but it will be something else. So this is how the polynomial

division is performed by using Linear Feedback Shift Register. Let us see the

performance of CRC.

(Refer Slide Time: 40:18)

CRC can detect cyclic redundancy can detect all single-bit errors. This is similar to the

simple parity check. It can detect all double-bit errors provided there are three ones in the

characteristic polynomial and usually in a number of characteristic polynomials we have

seen that total number of ones is indeed more than 3. So the CRC can detect all double-

bit errors. CRC can detect any odd number of errors provided it is divisible by x plus 1

and CRC is chosen such that it is divisible by 1 so it can detect single-bit error, double-bit

error and any odd number of errors. Not only that it can detect all burst errors less than

the degree of the polynomial. So degree of the polynomial is n so it will detect all the

burst errors less than the degree of the polynomial.

We have seen that the CRCs are usually 16-bit or 32-bit. So in this case up to 15-bit burst

errors can be detected and moreover CRC can detect most of the larger burst errors. That

means if the polynomial is of 16-bit then if the degree of the polynomial is n then the

number of burst errors that means more than 15-bit errors can also be detected. In other

words most of the larger burst errors that means more than 15 bits can be also detected

with high probability. However, all the larger burst errors cannot be detected.

For example for CRC-12 that means whenever degree of the polynomial is 12 it will

detect 99.97% of all errors with length 12 or more so we find that the CRC gives you a

very powerful error detection scheme and that is the reason why it is so widely used.

Now let us shift gear and come to the last topic that is error correction.

(Refer Slide Time: 43:43)

In error correction two basic approaches are used. The first approach is based on

backward error correction. This backward error correction is based on this; when an error

is detected in a frame the sender is asked to retransmit the data or frame. That means the

receiver will detect the error by one of the schemes as we have discussed then it will send

information to the ender and ask the sender to retransmit the frame once again. So this

approach is known as Automatic Repeat Request and this scheme is known as backward

error correction because we are going back to transmission once again. this particular

ARQ scheme will be discussed in our next lecture. in this lecture we will be focusing on

forward error correction.

In this forward error correction what is being done is by using more redundancy the

transmitted data is received and not only error detection is performed but error correction

is also performed on the received data so it is based on the received data it is not based on

the transmission and after the data is received using the additional bits or redundant bits

error correction is performed. Let us see what the basic ideas are. The basic idea is to

have more redundancy particularly using this property.

For example, whenever you are performing error detection the requirement is an error

detecting code if and only if the minimum distance between any two code words is two.

So what you can do is….. all the codes can be divided into two sets codeword and non

codeword then whenever you choose two code words say you are choosing 1 0 1 0 1 0 1

1 another codeword must have a distance of two what do you really mean by that they

must defer in two bit position say it can be 1 1 0 1 1 0 1 1 so here we find they differ in

these two positions. So, whenever they differ in two bit positions and if error occurs in

any one of these it will fall here. Whenever error occurs it will not be a part of codeword

but it will be part of non codeword that’s how error is detected.

However, if the distance is only one then again it will be part of this so any single-bit

error will lead will generate a non codeword that is the basis for error detection. That

means the codes are selected in such a way that they differ in two number bits.

(Refer Slide Time: 46:10)

If you check the codes that are generated by parity bit you will find that this property is

satisfied. That means any two code words will differ in two bits. But for error correction

requirement is more. The minimum distance between any two code words must be more

than two and the number of additional bits should be such that it can point the position of

the bit in error. So here the requirement is we are not only interested in detecting error but

identifying where the error has occurred. So the additional bits are to be selected such

that it is possible to point the bit in error. So requirement is if k additional bits are used

then it can point to 2 to the power k positions and the requirement is that 2 to the power k

has to be more than m plus k plus 1 so this condition has to be satisfied only then the

error correction can be done. This table shows the requirement. For example here the

number of data bits is varying from 1 to seven and the number of redundancy bit required

to satisfy the conditions is given here.

(Refer Slide Time: 47:31)

For one data bit the total number of bits has to be 3 including the redundancy bits but for

seven data bits the redundancy required is four having total number of bits as 11. So, if

the number of data bits is 16 it can be shown that we will require 5 bits that means m plus

k in this case is 21. To point to one of the 21 bits you will require 5 bits so total number

of bits will be 21 whenever your number of data bits is 16. Let us see how exactly it is

done.

 (Refer Slide Time: 49:02)

So, to each group of n information bits k parity bits are added to form m plus k bit code

and the location of each of the m plus k digits is assigned a decimal value. Then the k

parity bits are placed in position 1, 2, 2 to the power k positions then the k parity checks

are performed on selected digits of each codeword and at the receiving end the parity bits

are recalculated. The decimal value of the k parity bits provides the bit position in error if

any. Let us see how exactly it is being done with the help of an example.

(Refer Slide Time: 51:01)

Let’s assume that your data is of four bits, let’s assume your data is 1 0 1 0. So what is

done is the parity bits p1 p2 these are added in one two and four positions and here you ad

the data bits d1 d2 d3 and d4 then as you can see with the help of this three parity bits we

have to identify the positions. Let’s assume these to be (Refer Slide Time: 50:00) 1 2 3 4

5 6 7 per each position so seven positions have to be pointed with the help of parity bits

by a code and here the codes are shown. So here we find 0 0 0 whenever there is no error

and when error is found then it will point to this position 0 0 1. Whenever it is 0 1 0 it

will point to this position by checking parity bit on this. So these parity bits p1 has to be

calculated wherever it is 1 that means using the bit positions 1 3 5 and 7 and p2 has to be

calculated by 2 3 6 and 7 and p3 has to be calculated using 4 5 6 and 7. Let’s see how it is

done in this example.

So this p one has to be calculated using 1 3 5 7 so these three are given so already these

two are one so two even number of ones are there so this has to be 0 (Refer Slide Time:

51: 24) and these 2 3 6 7 so here the number of ones is odd so you have to add 1 to make

it even and here 5 6 7 is already even so it is 4 5 6 7 so here it will be 0. So this is the

code words generated by calculating the bits and then it is sent. Suppose error has

occurred here this has become 0 so this is the data that is being received at the receiving

end.

Now you calculate the parity based on the same manner. So here we get C1 C2 and C3. So

by using 1 3 5 and 7 we find it is odd. So this has to be 1 by using this bit, this bit, this bit

and this bit so it is even so this has to be 1 to make it 1. Then 2 3 6 7 so we find it is

already even. So this is 0 and here it is 4 5 6 7 it has become odd so to make it even it has

to be 1 again. So we find it is 5 that means it is pointing to a two bit number 5 so the

corrected data has to be 1 0 1 0 0 1 0. With this simple example we have illustrated how

the code is generated by using hamming code. This is known as the hamming code

scheme and how the correction is done at the receiving end. This is how the error

correction is performed by using hamming code.

(Refer Slide Time: 53:17)

Therefore in this lecture we have discussed how error correction is done by using three

schemes; parity check, checksum and CRC and how error correction is performed.

Obviously only single-bit error correction can be performed by using hamming code.

However, when the number of bits in error is more you have to add more redundancy.

Now it is time to consider the review questions.

(Refer Slide Time: 54:44)

1) Compare and contrast the use of parity bit and checksum for error detection.

2) Draw the LFSR circuit to compute a four bit CRC with the polynomial x to the power

4 plus x to the power 2 plus 1.

3) Obtain the four bit CRC code word for the data bit sequence 1 0 0 1 1 0 1 1 1 and the

left most bit is least significant using the generator polynomial given in problem 2. That

means this is the generator polynomial.

4) How many redundant bits are to be sent for correcting a 32 bit data unit using

hamming code?

These questions will be answered in the next lecture.

(Refer Slide Time: 55:48)

1) Distinguish between half-duplex and full-duplex transmission.

In half-duplex communication data communication in both directions between the

systems are performed using a single line. So it is not possible to perform simultaneous

transmission in both directions. It has to be done by using a protocol as we saw in the last

lecture that how a policeman communicates with his head office by using a suitable

protocol and the other end will say over and then the talking will start.

So, data transmission takes place in one direction at a time using suitable protocol.

However, in full-duplex communication two separate lines are used for transmission in

both directions so simultaneous transmission in both directions are possible.

 (Refer Slide Time: 56:01)

2) Why serial transmission is commonly used in data communication?

Some of the important reasons are given below:

 Reduced cost of cabling

 Reduced cross talk

 Availability of suitable communication media

 Inherent device characteristics and

 Smaller size of the connector

 (Refer Slide Time: 56:59)

3) Distinguish between asynchronous and synchronous serial modes of data

communication.

In asynchronous serial modes of data transfer the data is transmitted in small sizes or

frames along with start bit, parity bit, stop bits and as we have seen the maximum number

is 8. And this mode of transmission is self synchronizing with moderate timing

requirements. The major drawback is high overhead; it can be 40% overhead as we have

seen.

In synchronous mode the clock frequency of the transmitter and the receiver should be

same and hence complex hardware is required to maintain this rigorous timing. But this

approach is efficient with much less overhead.

 (Refer Slide Time: 57:13)

4) What is null modem and when can it be used?

A null modem is nothing but a cable with two female connectors at both ends so no

active component is present. Here it is just a cable with two connectors at both ends so

these are the two female connectors at both ends (Refer Slide Time: 57:20). This can be

used when two DTEs are in the same room the same interface may be used but there is no

need for any DCE in such a case the concept of null modem is used.

(Refer Slide Time: 58:16)

5) In what way standard modems differ from 56K modems?

These modems allow data transmission at the rate of 56 Kbps in downlink direction.

However, these modems can only be used when one of the two parties such as internet is

using digital signaling. Data transmission is asymmetrical. For example, from user to the

internet is that is in the uploading direction it is maximum of 33.6 Kbps but from the

internet to the user where digital signal can be used it is 56 Kbps.

With this we come to the end of today’s lecture, thank you.

