
Introduction to Programming in C 

Prof. Satyadev Nandakumar 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture – 52 

 

In this lecture, we will see a slightly more advanced data type then a singly linked list. 

We will briefly go over one or two functions to manipulate the data structure. The 

principle of manipulating the data structure for the other operations is similar. 

(Refer Slide Time: 00:18) 

 

So, in the case of a singly linked list we have seen that every node has one link to it is 

next neighbor. And we have seen this problem in a singly linked list that, if you are at a 

current node in a link list, you can always go forward but, there is no way to go back. 

The only way to get to it is previous node is to start all over again from the beginning of 

the list and traverse until you reach the previous node. 

So, we can easily remedy this by thinking of a data structure, a slightly more involved 

data structure, where every node has two links. So, look at this node 2, it has two links, 

one is to it is a successive neighbor, so, it is next node. There is another link which goes 

back to it is previous neighbor. So, in this data structure there are two links per node. 

Therefore, it is known as a doubly linked list and this list obviously, you can go from a 

current node, you can go forward or backward so, easily. 

So, now the variation is this and each node has three fields, one is a pointer to the 



previous node, the second is the data in the node and the third is the pointer to the next 

node. So, how will the definition look like? It will say something like struct dllnode, 

Doubly Linked List node. It will have one field which is data, int data let us say and then 

two nodes, struct dllnode next and struct dlllnode previous. 

So, one to go to the next node and another to go to the previous node. Now, we will need 

two pointers typically for a doubly linked list. One is, the pointer to the beginning of the 

list, which is usually called the head and then, another to the end of the list which is 

usually called the tail. So, I will use a typedef in order to shorten the name, I will just say 

typedef struct dllnode star, node pointer. And then, I will say that the list has two node 

pointers, node pointer head and node pointer last. 

So, a doubly linked list, each node in the doubly linked list has two lists, one to it is 

previous node and another to it is next node. And the list itself has two pointers, one to 

the beginning of the list called the head and another to the end of the list called the tail. 

(Refer Slide Time: 03:00) 

 

So, now a doubly linked list is another data structure. Notice that, we have seen two or 

three data structures so, for arrays are one, which c already provides, we have already 

seen a singly linked list. Now, you have seen a third data structure which is a doubly 

linked list. Now, a data structure has data and a bunch of operations, defined on it. So, let 

us look at typical operations that can be defined on a doubly linked list. And we will go 

over the implementation of two or three of them. 

So, node pointer head. So, this is our function that should return the head of the list. 



Similarly, node point of tail, we should return the tail of the list. Insert before, so, this is 

like the insert before node in the case of a singly linked list. So, here we are given a 

current node and we have to insert before a current node in the doubly linked list. Notice 

this was difficult in a singly linked list, because there was no way to go from a current 

node to a previous node. 

We could always go to the next node. So, if I say that here is a node and insert before that 

node in a singly linked list, it is a difficult, you need some extra information. But, in a 

doubly linked list you have the current node and you can use the previous link, in order 

to go before that. Insert after node also can be done, this could also be done in a singly 

linked list. 

(Refer Slide Time: 04:40) 

 

So, and then you can think of several other common like, you can think of a make node, 

you can think of a make list with a single node pointer 2 by pnew. You can make an 

empty list, you can check whether a given list is empty. You can write functions to copy 

a doubly linked list to a new doubly linked list, you can concatenate two doubly linked 

list, you can do a deep concat, we will see this in a future slide. You can append two link 

list and so, on. 



(Refer Slide Time: 05:21) 

 

Similarly, since we have insert functions, we can also have delete functions, you can 

delete a particular node, you can extract a node in the sense that… So, delete would take 

out a node and free the memory allocated to the node. Extract would just take out the 

node from the linked list. But, you retain the node, you can delete an entire list and so, 

on. 

(Refer Slide Time: 05:50) 

 

So, let us look at a couple of these functions, other functions can be written in similar 

manner. So, suppose let us take insert before node, this was a function that was not easy 

with the singly linked list. So, I am given a linked list L and given a current node pcurr 

and a new node to insert before the current node. So, what are the things to check? If the 



list is empty, then insert before the current node just means that, you create a new node 

and return the new list. 

Now, if the head of the list is null, then you just say that now the new list contains only 

one node, L head will point to new, L tail will point to new. So, if the list itself was null, 

then what you do is, you create a new node. Now, the new list contains only one element. 

So, the head will point to that and the tail will also point to that and you return that. Now, 

you come to the non-trivial case. Suppose, there is a list and the list has some elements. 

So, if p current equal to null, then you return the L, this is an error, if p current is not 

equal to null, then what you do is the following. So, now you have to insert p new into 

the list. So, how do you do this? So, we say that the new nodes next will be… So, we are 

trying to insert pnew before p current. So, the new nodes next will be p current, p 

currents previous will go to pnew. 

And so, the pnew next will go to p current and p currents previous, will go to pnew. 

Similarly, we have to say that the previous node, the node before p current it has to point 

to pnew. So, p currents previous, that nodes next will go point to pnew and then you 

return the new list. So, this can be done by looking at pointers and handling pointers, 

carefully. 

(Refer Slide Time: 08:23) 

 

So, now let us see how to delete a particular node in a list. So, if you have to delete the 

header of the list, then if there is a list you just delete the header and you just free the 

entire list. Now, if you have to delete a particular node in the middle of a list, what do 



you do? So, let us look at the various cases. So, in case 1 the node that you want to delete 

is the head of the list. So, in this case suppose you want to delete p, what would you do? 

You would make head point to the next element and free p. So, head will be made to 

point to p next. So, this is the line here, L head will go to p next. Now, this guy’s 

previous will be set to null, because we are going to delete this node. So, this guy’s 

previous will set to null. So, now it does not point to anything and then you will free p. 

So, this is the first case, where p the node to be deleted was the head of the list. 

Similarly, if you want to delete the tail of the list. So, now, what should you do here? The 

tail should go to p previous. So, in case 2 when p is the end of the list that we want to 

delete, then tail should go on to p previous. Now, this guy next will now point to null. 

Because, we are going to delete this node and finally, we will free p. So, L tail will go to 

p previous, L tail next will be a null and then finally, you will free p. 

So, we have seen two easy cases, one is delete the head and the other is delete the tail. 

And now, you will see the difficult case, where p is an intermediate node. So, in this case 

what we will do? So, we have to remove this node. So, p previous next node should be 

the next node of p previous. So, this link should point to the node after p. So, that is the 

first thing. So, we will make this node point to the node after p and this node previous 

should point to the node before p. So, we will reset the links. 

Now, if you look at the link, this guy’s next is the one after p, this guy’s previous is the 

one before p. So, now p can be safely ago. So, this is how you would delete a node in the 

intermediate list. So, if there is a next node, then p next previous will be p previous that 

is this backward link. And if there is a previous node, then p previous next will be p next, 

that is this forward node and finally, after that you will free p. 

So, this is how you would delete a node from a doubly linked list. And other operations 

can be done in a similar manner and some of these operations will be asked in the 

exercise problem that you will be assigned. Similarly, you can think of an extract node. 

The code will be exactly identical to before, except at the end, you will instead of freeing 

p you will return p, you do not free the p node, you will just return the p node. 



(Refer Slide Time: 12:07) 

 

Now, let us look at one more example, how do you append one node to the end of a list? 

So, first we will check that the node is pointing to a non null node. If it is pointing to a 

null node that is nothing to be done. So, there is nothing to be appended,. So, you have 

returned. Now, if there no need list, what you do is you make a list with only one node 

which is p. Now, if there is a list you can, in order to append the node at the end what 

you can do is, call insert after node L, L last p. So, append will be the same as insert the 

node p at the end of the list. So, you will say insert after L last, what is the node to be 

inserted, p. So, if you have an insert after node or an insert before node, you can do this 

to implement other functions. So, this is a brief introduction to doubly linked list which 

are similar to singly linked list, but facilitate forward as well as backward traveling from 

a current node. Using that you can implement more functions easier than a singly linked 

list. At the same time, it has all the advantages of a singly linked list in the sense that, if 

you want to insert a node, it can be done using a constant number of operations. If you 

want to delete a node, it can be done in a constant number of operations. So, those 

advantages are similar to a singly linked list. 

At the same time, the disadvantages are also similar to a singly linked list in the sense 

that, if you want to search through even a sorted doubly linked list, you have to search 

through all the elements. 


