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In this video we will look at slightly more general way of defining problems through 

recursion.  
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We will, for the lack of a better name, I will call it just two-way recursion. These are 

problems which are solved by calling two-sub instances. This is the picture of a family 

tree, and we will see that the call stack for a two-way recursive functions looks 

somewhat similar to a family tree.  
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Let us revisit a problem that we have seen which is to find the maximum value in an 

integer array. We saw that the stack depth in our earlier solution was order n, because 

each problem of size n called once at problem of size n minus 1. Now, can we reduce the 

depth of the stack from something close to n to something smaller than n.  

So, here is an alternate way to look at the problem which can be described in a very 

simple way. Instead of looking at the maximum of the first element and then the tail, 

what I can do is, take an array of size n and split it roughly in 2 halves. So, there is left 

half and a right half, each of size n over 2.  

Now, imagine that you have the solution for the greatest element in the first half, let us 

call that x. And imagine that you have the greatest element of the right half, let us call 

that y. Now, whichever is greater among x and y, is going to be the greatest in the whole 

array. And this is the idea that we are going to implement right now.  

So, divide the array into about 2 equal halves. The first half is 0 to a n by 2 minus 1; this 

contains n by 2 elements. And the second half is, a n by 2, so on, upto n minus 1; this is 

the right half. Now, recursively find the maximum element of each half. And let us say 

that you have x which is the maximum in the left half and y which is the maximum in the 

right half, then you just return the larger of x and y, that should be the largest element of 

the array.  

While doing this we have to take care of the base cases. This is as before for the linear 

case; when n is 1 then the only element in the array is the maximum element, so, return a 



of 0. If n is 0 that is the array is empty, you return minus infinity. So, let us consider a 

concrete array; a, is an integer array with these elements.  
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Just to remind you, the linear version was done as follows: if n is 0, you return something 

like minus infinity, a very large negative value. Now, if n is 1, you return a of 0 which is 

the only element in the array. Otherwise, you have atleast 2 elements. And earlier what 

we did was, you call the sub problem, a plus 1, so, the array which starts with the second 

element in the array. And now the sub problem has n minus 1 elements because you are 

considering a 0, the first element as a separate thing.  

Now, what you want it to return was maximum of whatever was returned in the sub 

problem. So, let that be some maxval. And whichever is greater, a zero and maxval, that 

is going to be the greatest element in the array. Now, we saw that the stack depth for this 

problem was n because size n problem is being reduced to a size n minus 1 problem. So, 

in each step we are reducing the size of the problem by 1, and increasing the stack depth 

by 1. So, in total that stack depth would be n because there will be about n calls or n 

minus 1 calls; however, you want to count. 
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Now, let us look at the two-way recursive version. So, here is the algorithm that we 

discussed; and let us just code this up. So, we will have int max array; and then int a, 

which is the array containing n elements. And let us say that we have some constant 

minus infinity, we have defined elsewhere in the program. Later we will see how to do 

this. 

Let us say that if n is equal to 0, you return minus infinity, some large number, some 

large negative value. And if n is equal to 1, you return the only value in the array. So, 

these are the base cases as before. The changes here; if you have at least 2 elements then 

you return maximum of the values returned by the 2 sub problems. What are the 2 sub 

problems? The first is the left half of the array which starts from, a, that is the, at the first 

location in the array, and contains n upon 2 elements.  

Then we need to compute the maximum of the right half; how do we find the right half? 

So, we need to skip, n upon 2 elements, which went to the left half, to get to the first 

index in the right half. So, we do that by saying, a plus n upon 2. If, a, is the address of 

the first location of the whole array then a plus 1 upon 2, is going to be the first address 

of the first location of the right half.  

And how many elements does the right half contain? N upon 2 elements went to the left. 

Therefore, what we are left with is n minus n upon 2. So, notice, how we call the left half 



starting from, a, and containing n upon 2 elements; and right half which is starting from, 

a plus n upon 2, and containing n minus n upon 2 elements.  

Now, let us examine whether this is better than the previous recursive call, where we 

reduce the problem of size n to a problem of size n upon 2. It was called linear recursion 

because we called one sub problem in order to solve the whole problem. Here, we have, 

we are roughly dividing it into halves and then calling 2 version, 2 sub problems, each of 

size about n upon 2. Now, surprisingly, we will see that there is a huge improvement if 

you do this. And this is one of the most elementary tricks in computer science which is 

called divide and concrete; and here is a very simple example of that. 

(Refer Slide Time: 07:00) 

So, if you look at the concrete array that we had, and we call, max array a comma 8, 

because this contains 8 elements. Now, we say that it will recursively call 2 sub problems 

which is maximum, max array a comma 4. So, that will be the first 4 elements starting 

from, a 0. And then max array a plus 4 comma 4, which are the 4 elements starting from, 

a 4 which is the fifth element in the array. 

Now, let us just look at the stack. Now, notice what types I repeatedly mentioned which 

is that in order to think about a recursive problem you just think about the formulation of 

the problem, and then what you have to convince yourself is if I solve the sub problems 

correctly then I will get the correct solution to the main problem. So, I will have, I will 

divide my work into 2 sub problems.  



So, both of them will report their results back to me. Now, what I have to do is to figure 

out how do I put these 2 solutions together in order to solve the whole sub problem. So, 

think about it in terms of the design of the algorithm, and not about the execution stack. 

But, we will show why this is a major improvement over the linear recursion version of 

the same solution by looking at the stack.  

(Refer Slide Time: 08:33) 

So, let us just look at the stack; max array a comma 8, calls, max array a comma 4. Now, 

the way function calls in c works, you will go to the second half of this problem which 

is, a plus 4 comma 4, only after max array, a comma 4, is completely done, right. So, let 

us now see how, max a comma 4, will execute? It has 2 sub problems again. And let us 

look at the first sub problem which is, max array a comma 2, that itself has a sub 

problem, max array a comma 1. In order to abbreviate I will just put at dot there, but that 

dot is supposed to signify max arr. 

Now, once you have solved this, suppose this is the base case, now it contains only 1 

element, so, the only element is the maximum; so, it returns that value to, max array a 

comma 2; that is one of the sub problems for, max array a comma 2. So, now, this, max 

array a comma 2, calls the second sub problem that it has, which is, max array a plus 1 

comma 1. Again, it is a base case; it contains only 1 element; that single element is the 

greatest element in that.  



So, you have 2 values now - one coming from the left and one coming from the right. 

And you just compare these 2 values, and that will be the greatest value in the first two 

elements of the array. So, once you do this, you return; and one you return, you get the 

value, max array a comma 2. So, suppose, all of that happens, and then you return to, 

max array a comma 4. At this point, this function will call its second component which 

is, max array a plus 2 comma 2, and the recursion continues.  

So, as soon as a function returns its stack will be erased; I am showing that by dimming 

out that particular function call, ok. And this proceeds. So, once this value is obtained 

you can return to, max array a plus 2 comma 2. Now, this function is finished because it 

has called both its sub problems. So, this will return. And this problem has returned, has 

finish with both its sub problems. So, you will, after this function is done you will 

eventually unwind all the way back up to the top.  

And now, we are ready to call the second sub problem of, max array a comma 8, which is 

max array, a plus 4 comma 4. And. you do it similarly. Now, one thing you can notice 

here, is that, at any point the active path, what are active on the stack, the functions 

which are not yet returned are the highlighted entries in the call tree, ok. 

So, for example, at the very end the call stack contains 4 functions. Before you 

eventually return and compute the loss, compute the maximum of the whole array, the 

worst case depth of the stack is 4. And we had 8 elements, so, you would thing that based 

on this experience that the depth of a stack is about n over 2. But, if you think more 

carefully about it what happens is that, at every sub problem, at every level, I am 

dividing the problem by 2.  

So, the depth of the stack is the maximum length part in this tree. And at every step of 

the tree I am dividing the problem by 2. How many times do I have to divide in by 2 in 

order to reach 1, that will be the depth of the tree. Equivalently, you can think about, how 

many times do I have to double in order to reach n if I start from 1, that is the bottom of 

way. So, if I start from 1 and I double every level, how many times do I have to double in 

order to reach n, that is the solution to the equation 2 to the x equal to n. So, what I have 

to find is, how many times do I have to double? So, how many times do I have to 

multiply 2 with itself in order to reach n? And you will see that the solution is log n to 

the base 2. So, this is going to be the height of the call graph or the call tree. 
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So, the stack depth here is about, 1 plus log n, that is approximately correct, which is a 

huge improvement over n. If you think of n as something like 1024 which is 2 to the 10, 

we are saying that the stack depth is about 10. Notice that, in the linear case we would 

have a stack depth of about 1024, instead we are doing about 10. So, this is the huge 

improvement in the case of stack depth.  

So, with a very simple idea which is instead of solving one sub problem of size n minus 

1, what if you split it into 2 halves, roughly about size n by 2. You will see that you get a 

huge improvement in the stack depth. This is one of the simple ideas that we repeatedly 

use in computer science.  
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Now, there are standard arithmetic functions also which can be defined in terms of the 

two-way recursion. A very classic example is Fibonnaci numbers. So, for example, they 

are defined as, F 0 equal to 1, F 1 equal to 1. And for n greater than or equal to 2, they 

are defined as f n equal to f n minus 1 plus f n minus 2. So, if you code this out, so, a 

very simple function, int fib int n, if n is 0 or n is 1, you return 1. Otherwise, you return 

Fibonnaci, so, fib of n minus 2 plus fib of n minus 1.  

So, it is a very simple arithmetic sequence which is defined in terms of a two-way 

recursion. So, this is the very simple way to write it, but it is a very inefficient way to do 

it. So, we will see why it is inefficient in a moment.  
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If you just think of how you trace the function, in the case of a later, of a concrete 

Fibonnaci number; let us say, we want to calculate the fifth Fibonnaci number. Now, that 

depends on fib 4 and fib 3; fib 4 depends on fib 3 and fib 2; fib 3 depends on fib 2 and 

fib 1, and so on. So, this is the call graph that you will have, the call tree that you will 

have if you consider the calculation of Fibonnaci 5.  

Now, what is the problem here? You will see that many computations are unnecessarily 

done multiple times. So, if you look at Fibonnaci 2 in the call graph, it is evaluated 

multiple times. So, Fibonnaci 2 is evaluated when fib 3 is called. It is also called when 

fib 4 is called. And fib 3 is called in a different context. When you want to calculate fib 

5, even there fib 2 is called. So, you will see that fib 3 is called 2 times, fib 2 is called 3 

times, and fib 1 is called 5 times, and so on.  

So, we are unnecessarily repeating the work. And there is tricks in computer science to 

alleviate, to remove this kind of unnecessary work. But, that is strictly, it is not an idea 

that strictly falls into the concept of recursion, and is slightly outside the scope of this 

course. So, we will not cover this in this course, but I just want to point out that even 

though it is natural to consider this arithmetic sequence in terms of two-way recursion it 

may not be the most efficient way to do it. 


