
Introduction to Programming in C

Prof. Satyadev Nandakumar

Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur

Lecture - 34

 (Refer Slide Time: 00:05)

So, here is the stuff that we have seen about pointers. First we have defined what is a

pointer? A pointer is just a variable that holds the address of another variable. We say

that pointer points to another variable. And depending on what variable it points to, the

type of that target, we say it is an int pointer or a character pointer or a float pointer and

so on. So, this is the first thing what is a pointer? And then we have seen what all can

you do with a pointer; what are the operations that you can do in a pointer. So, if you

have a normal variable, you can take the address of that variable using the AND

operator. If you have a pointer, then you can dereference the pointer by using star of ptr.

That will go to the location pointer 2 by ptr and take the value of that target.

Further we have seen pointer arithmetic involving plus and minus. And I have introduced

you with the caution that they are meant to navigate within arrays; they are not meant to

navigate to arbitrary locations in the memory. If you do that, it may or may not work.

And further we have touched up on the intimate relationship between arrays and pointers

in C. As captured by the formula, array of i is star of array plus i. A special case of this is

to say that the name of the array is an address of the first entry in the array. For example,

array of 0 is the same as star of array plus 0. We have seen this and think about them

once more to get comfortable with the notion.

(Refer Slide Time: 01:47)

In this video, we will talk about how pointers interact with functions. When we

introduced arrays, we first said here are arrays; here is how you write programs with

arrays. And then we introduced… Here is how you pass arrays into functions. Let us do

that the same thing with pointers. So, here are pointers. And how do you pass them to

pointers? Before coming into how do you pass them to pointers, we will go into – why

should you pass pointers to functions. So, let me introduce this with a very standard

example. This is a classic example in C. How do you exchange two variables? We have

seen the three-way exchange; where, I said that, if you have three rooms: A, B… I have

two full rooms: A and B.

And then I want to exchange the contents of these rooms; then I can use a third room.

First, move the contents of A to T; that is your first move. Then move the contents of B

to A; that is your second move. And then afterwards, A now contains the contents of B;

and B is empty; T is containing the contents of A. So, the third move is – move T to B.

So, the net effect will be that, B contains the whole contents of A; A contains the whole

contents of B; B contains the whole contents of A; and T is empty. So, this was the three-

way exchange, which we did within main function. This is long back when we discussed

GCD algorithm.

(Refer Slide Time: 03:44)

Now, let us try to do that using a function. So, I have a swap routine, which takes two

integer arguments: a and b; and it is meant to exchange the values of a and b. So, inside

main, I have a equal to 1, b equal to 2. And I call swap a and b. And swap a and b – what

it does is this three-way exchange that, we have discussed. Now, just to test whether

things are working, I have a bunch of printf statements, which says what is the value of

swap, what is the value of a and b after swap has executed. Similarly, when I come back,

I will just print the values of a and b to see what has happened after swap. So, when you

call swap and you output it within swap, it is very clear that, a equal to 2, b equal to 1.

So, the three-way exchange would work as you expect. And you have whatever was

passed, which is swap 1, 2. So, it will exchange those variables and it will print a equal 2

and b equal to 1.

Now, within main, a was 1 and b is 2. Now, when you print these statements inside main,

surprisingly, you will find that, a equal to 1 and b equal to 2. So, the effect of swap is

completely absent when you come back to main. Within swap, they were exchanged.

But, when you come back to main, they were not exchanged. Why does this happen?

This is because remember that, some space is allocated to a function; and whatever space

is allocated to the swap function, all the variables there is erased – are erased once you

return from the swap function. So, within swap function, a and b are exchanged. But, all

that is gone when you return to main. So, passing integer, float, character variables as

parameters, does not allow passing back to the calling function; you have only the return

value to return back. Any changes made within the called function are lost once this

function returns. So, the question is can we now make a new function such that work

done within that function will be reflected back in main.

(Refer Slide Time: 06:39)

Now, here is an intermediate solution. We know that, if we pass arrays, then work done

in the called function will be reflected back in the calling function. So, you could think

of the following intermediate function. So, if I have int num 2 and then I say that, num 0

is 1, num 1 is 2. This is in the main function. And then I call swap of num. Now, we will

call it swap 1 of num; I have a new function. Now, what swap 1 does is – so int swap 1

int arr. So, suppose I have this function; inside that, I will just say that, I will have an

intermediate variable t; and then have t equal to num or arr 0. Then arr 0 equal to t; arr 0

equal to arr 1; and arr 1 equal to t. Suppose I have this function. And now, you can sort

of argue that, this will also swap the two cells in the num array. So, the dirty trick that I

am doing is that, I want to swap two variables; instead, I will say that, instead of these

two variables, I will insert them into a array of size 2; and then call swap 1 on that array.

Now, what swap 1 does is – it will exchange – it will do the three-way exchange on the

array.

Now, I know that because of the way arrays are passed in C, any change that happens to

the array arr inside swap 1 will be reflected back in main. So, when I print these num

array back in main, I would see that, num 0 is now 2 and num 1 is 1. So, this is an

intermediate trick in order to write the correct swap function. But, you will agree that,

this is a kind of a dirty trick, because in ordered to swap two variables, I created an array;

and then depended on the fact that, swap will change the array in such a way that, the

change will reflected back in main. So, is there a nicer way to do it? That is what we are

interested in. And the answer is let us just think about that array trick. What we did was –

when we passed an array, we were of passing the address of the array.

(Refer Slide Time: 09:40)

This is how arrays are passed to functions. So, now, let us just take that idea that, we are

passing the address. So, let us try to write a swap function, where you are passing the

address of variables instead of the variables themselves. So, here is the correct swap

function. And what I write is void swap. So, void is a new keyword that you will see; but

it is not a big deal; it is just a function that does not return a value; it just performs an

action without returning a value. So, such functions you can write it as void – void swap

int star ptra, int star ptrb. So, ptra and ptrb are pointers.

Now, inside the code, you have something that looks like a three-way exchange. It is

very carefully return, because the obvious way to quote the function is not right. So, you

have to be slightly careful; you have to declare an integer variable. Now, t contains star

ptra; star ptra equal to star ptrb; and star ptrb equal to t. The obvious way to write it

seems to be – you declare an integer star ptr t and then do this. It is not quite right; we

will come to that later. So, here is the swap function. And how do you call the function?

You declare two integer variables in main: a equal to 1 and b equal to 2; and then pass

the addresses using AND a and AND b.

(Refer Slide Time: 11:27)

So, let us just trace the function. You have two variables in main; a equal to 1, b equal to

2; and call swap of address a and address b. Now, just to denote that, these are addresses,

I will say that, these are… a is situated at location 1024 in hexadecimal. So, this is some

location in memory – hexadecimal 1024. And this is some other location in memory; b is

say at hexadecimal location 2000. Now, do not be distracted by the hexadecimal notation

if you are uncomfortable with it; just write 1024 in an equivalent decimal notation; and

you can say that, it is at that location. So, it is at that location. And I am representing the

location in hexadecimal, because it leads to shorter addresses. And this is also an

address. So, when I will take address of a, I will get 1024x in… When I take the address

of b, I will get 2000x. So, this is the address of a. And it is located at memory location

1024 when represented in the hexadecimal notation.

(Refer Slide Time: 12:49)

What happens when you call the swap function? So, here is the state of main. And when

you call the swap function, a new bunch of memory – a new block of memory is

allocated on the stack. So, first, the formal parameters are copied their values from the

actual parameters. So, ptra will get AND a, which is 1024; ptrb will get AND b, which is

2000. Now, I declare a new variable t; t equal to star ptra. So, what does that mean? ptra

is an address – dereference the address; which means go look up that address. So, it will

go to this location and get that value. So, t will now become 1. And the next statement is

somewhat mysteries; please understand it very slowly. So, on the right-hand side, you

have star ptrb. This means dereference ptrb. So, we are saying ptrb is address 2000;

when you dereference it, you will get the value 2. Now, where do I have to store that

value 2? For that, dereference ptra. So, 1024 – dereference it; you will go to this box.

That is where you have to store 2.

(Refer Slide Time: 14:19)

So, 2 will go to that location. So, what has happened due to that is that, a in name has

now changed. Why? Because within the swap function, we were dealing with pointers.

So, as a result of the statement star ptra equal to star ptrb, it has taken 2 from the main

functions b and put it back into the main functions a. And that was accomplished through

variables inside swap. So, think about it for a while. And the last statement of course is

star ptrb equal to t. So, dereference ptrb and put the value 1 there. So, here is a three-way

exchange that works through variables only in swap. But, since they were pointer

variables, you ended up changing the locations in the main as well.

(Refer Slide Time: 15:26)

And once you return, all the memory corresponding to swap will be erased. But then

when you to main, a and b will have changed. a and b were 1 and 2 before. Now, a is 2

and b is 1. So, it has correctly swapped. Now, as an exercise, I said that, the obvious way

to write the swap function is as follows. Void swap a int star ptrb; ptra and int star ptrb.

And then I declare int star ptrt. And then I write these statements. This is a very obvious

way to code swap. This does not work. So, try to draw these pictures as we have done

with a swap function that actually worked. Try to draw the picture of what happens in

main and what happens in the swap function. And understand why this particular swap

function does not work.

One final word about passing pointers to functions; C has something called a call by

value mechanism. What is meant by call by value is that, when you call a function,

remember the original picture that, your friend came with his note book and copied down

the numbers in your page. So, your friend created a separate copy of your arguments;

then computed what had to be computed and returned you a value. That picture is

essentially still correct. Even though you are now dealing with functions, which can

manipulate memory inside main, the passing mechanism is still call by value. It is just

that, what is being copied are the addresses. So, when you manipulate the addresses

through dereferencing, you end up changing the location inside main. So, even with

pointers in C, what happens is call by value.

