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Lecture – 2 

 

In this session, we will write another algorithm to solve a mathematical problem. If  

you do not know this algorithm already, that is fine; it is more for the purpose of  

demonstrating, if you know a solution, how do you come up with the algorithm to tell a 

computer how to solve it. 
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The algorithm is for finding the greatest common divisor or the highest common factor, 

this is known under two names of two positive integers: m and n. So, this is an algorithm 

you probably know. How do you solve this? Let us first try a naive solution. And before 

writing an algorithm, let us see what do I mean by the simple solution of GCD. So, you 

are asked to find the greatest common divisor of m and n; take the smaller number n; and 

now you start looking for each number k between 1 and n, remember that n is the smaller 

number; in descending order, do the following. What you do is if k divides m and n, then 

k is the greatest common divisor of m and n.  

And this is obvious by the definition of greatest common divisor; if k divides m and n, 

then it is obviously a divisor of m and n. Also we are coming in descending order; we 

start from n and go down to n. So, the first divisor that you hit when you go down is 



going to be the greatest common divisor of m and n. So, this algorithm obviously works. 

It will compute the GCD correctly, but it is very slow. And think about a very large 

numbers: m and n; and you will see that, it may go n steps before reaching the correct 

GCDs. So, compute the GCD of two very large numbers, which are relatively prime to 

each other; that means that the GCD of m and n are 1. Now, if you pick such a pair, this 

algorithm will compute the GCD correctly, but it will take n steps, because you have to 

go down all the way from n to 1 before you will hit the GCD. Can we do better? There is 

a faster way and it is a very old algorithm. 
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The algorithm is due to Euclid. We will see a slightly modified version of that algorithm. 

So, before we go into Euclid’s algorithm for GCD, we will describe what it does and 

give you a slight intuition of why it works. So, consider the GCD of 8 and 6. Now, you 

can consider two rods: one of length 8, and another of length 6. Now, obviously, if a 

number divides 6 and 8, then I should be able to make a stick of that length, so that I can 

measure 6 exactly with that shorter rod; and I can measure 8 exactly with that shorter 

rod. This is the meaning of a common divisor, and we have to find the greatest common 

divisor.  

So, first, what we will do is we will measure the longer rod using the shorter rod. Now, it 

may not measure the longer rod exactly. For example, in this case, 6 does not measure 8 

exactly; there will be a small piece of length 2 left over. So, take that reminder. And now, 



repeat the process; now, 2 has become the shorter rod and 6 has become the longer rod. 

Now, see if 2 measures 6 exactly; it does. So, you are done. And then you can say that, 2 

is the GCD of 8 and 6. The reason why this works is – by the nature of this algorithm, it 

is clear that 2 divides 6, because that is why we stop the algorithm. And also, we know 

that, 8 is basically 6 plus 2. So, it is obviously, a multiple of 2. So, it is a common 

divisor. And with a slightly more elaborate argument, we can argue that, it is the greatest 

common divisor. So, this is an algorithm, which is essentially due to Euclid. So, it was 

known for at least 2000 years. 
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Let us pick a slightly more elaborate example. Let us say we want to find the GCD of 

102 and 21. The process of taking remainder is what is known as the modulo operator in 

mathematics. So, 102 modulo 21 is the remainder of integer division of 102 by 21. So, 

the remainder of when you divide 102 by 21 is 18. So, that is the shorter rod for the next 

stage. Now, 21 mod 18 is 3. And that becomes the rod for the next stage; the shorter rod 

for the next stage. And 18 mod 3 is 0; that is when you stop the algorithm. So, when the 

modulo operator gives you 0 result; that means that, the shorter number exactly divides 

the larger number; that means that, the shorter number is a divisor of the larger number 

and you stop the algorithm. Now, you say that, GCD of 102 and 21 is 3. 



(Refer Slide Time: 06:18) 

 

So, this is a slight modification of the classical Euclid’s method for GCD. And so, it is 

based on the following simple fact, which we have described. And you can prove this 

mathematically as well. So, suppose you take two positive numbers: a and b; where, a is 

the larger number; then GCD of a and b is the same as GCD of b and the remainder when 

you divide a by b. So, it is written by the equation GCD of a, b is GCD of b comma a 

modulo b. The modulo operator is represented as the percentage sign, because this is the 

convention that we will use in C. And this equation can be seen by our previous slide; a 

was the bigger rod; b was the shorter rod. This was the first stage. The second stage was 

when b is the shorter rod. And the shorter rod for the next stage is modulo – is given by 

the modulo operator. To prove this, you can start by considering the division of a by b 

and writing a as b times q plus r. But, we will not go into the proof. From elementary 

properties of natural numbers, it is possible to prove that, Euclid’s method correctly 

computes the GCD. 
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Right now, we will move into how do we write the GCD algorithm in the form of an 

input. So, here is a slightly abbreviated picture. I have skipped the start state; but the start 

state is there. Let us focus on what happens during the algorithm. You have two numbers: 

a and b. The first thing to ensure is that, a is the larger number. The reason we do that is 

that, if a is the larger number, then the modulo operator is properly defined. So, if a is the 

larger number, then we are fine; we can go into the GCD algorithm. If a is not the larger 

number, you merely swap a and b, so that whatever is the larger number, you called it a. 

So, exchange a and b; means that you say that, the value of a is stored in a temporary 

variable; then the value of b is stored in a; and then the value of b is stored in t with the 

value of t stored in b. So, here is a way to exchange the values of a and b. So, ensure at 

first that, a is the larger number. Once you do that, you get into the code for the proper 

utility in GCD. 

First you test whether b is 0. If b is 0, then there is nothing to do; a is the GCD of a and 

b; GCD of 4 common 0 is 4; GCD of 8 comma 0 is 8, and so on. So, if the smaller 

number is 0, then there is nothing do in the algorithm; the algorithm is over; and you say 

that, print a. If b is not 0, then we do the Euclidean equation. You take a modulo b; store 

it in a variable g; then assign the value of b to a and assign the value of g to b. So, this 

corresponds to the operation of taking b and a modulo b as the next step. After you do 

that, you again test the condition whether b has now become 0. If it is 0, then we are 

done and a is the GCD; otherwise, we do another round of taking a modulo b and setting 



a equal to b and b equal to g. So, a, b and g are what are known as variables. And 

variables are used in programming to store exactly one value at a time. So, at any 

particular time, it will have one value; then after the execution of another instruction, it 

will have a new value and so on. 
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Now, for the purposes of describing an algorithm, imagine that, the variable is a box; and 

it is a name of a box; and the value is stored inside the box. For example, a, b and g are 

the variables that we have used in the program. And they are the names for these integer 

boxes. So, if we are computing, let us say the GCD of 5 and 3, then you might start with 

a equal to 5 and b equal to 3. The second operation that we have used in the code is the 

assignment operation. So, this is what an example of the assignment operator. And when 

we do an assignment, what we mean is that, you take the left variable, which is g in this 

case and assign it the value of what is the expression on the right-hand side, which is a 

modulo b . So, assignment a equal to b replaces whatever is stored in a by what is stored 

in b. So, take the right-hand side; take the value of that; and put it into the variable that 

the left-hand side represents. For example, if a was 5 and b is 3; after a equal to b, you 

would take the value of b and put it in a. So, a will now become 3 and b will remain 3. 
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Another small thing that we have used in the code is sequential assignment. So, if you 

write a bunch of statements one after the other, let us say separated by semicolons; then 

this means that, the instructions are to be executed one after the other in sequence. So, 

first, you do g equal to a modulo b; then you do a equal to b; and after that you do b 

equal to g. So, initially, let us say that a is 10 and b is 6; g is undefined. 
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After you run the statement g equal to a modulo b, you take 10 modulo 6; you will have 

4. 
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And then a equal to b; the value of b will be stored in a. So, a become 6. And then b 

equal to g; the value of g will be stored in b. So, b will become 4. 
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Now, let us just dry run the program or the algorithm and see how it computes the GCD 

of two numbers. So, I will denote the currently executing statement with an icon and I 

will call this the program counter. So, this is at any point, it is the next step to be 

executed. Initially, it is at the beginning of the code; where, you take the input. And we 

will have three variables, which will represent the current state of a program. So, suppose 



you want to compute the GCD of 8 and 6. So, you have a equal to 8; b equal to 6. You 

know that a is greater than b. 
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So, you proceed. 

(Refer Slide Time: 14:09) 

 

Now, you test whether b is 0. 
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So, since b is non zero, you go into the main body of the loop. 
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So, you do g equal to a modulo b; a equal to b; b equal to g, this step once. So, you will 

end up with a is now 6; b is 2; and g is 2. You again comeback to the discussion and test 

whether b is 0 or not; b is not 0. 
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So, you go back into the body of the loop again. So, you have g to be a modulo b. So, 6 

modulo 2 should be 0. 
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And then you do a equal to b and b equal to g. You will have a equal to 2; b equal to 0; 

and g equal to 0. At this point, b is now 0. 
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So, you say that a is actually the GCD of three numbers – of the numbers 8 and 6. 
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So, you can ensure that, it computes the GCD correctly. 

 


