
Introduction to Programming in C

Prof. Satyadev Nandakumar

Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur

Lecture - 13

So far we have been using while loops in C, now C programming language also provides

you other kinds of loops.

(Refer Slide Time: 00:12)

Let us look at some of them. The first alternative loop mechanism in C that we will look

at is what is known as a do-while loop?

(Refer Slide Time: 00:20)

And so it is a variant of a while loop, I am the general form is what you see here, you

have do statement followed by while expression. Am here is an important syntactic

difference which causes some syntax errors, when you code. The do while terminates

within semicolon, where is the while loop does? So, the while loop has the following a

form which is while expression, and then statement; the difference is that here the

statement is occurring before the while the test expression. So, the three way it execute is

the following. If first execute the statement, then evaluate the expression. If the

expression is true, you go back to step 1; that is execute this statement. If the expression

is false, then you get out.

So, you execute the x statement then test whether the expression is true or not, if it is true

you go back and the execute the statement again, so you loop. If the statement is false,

you get out of the loop. The difference from while loop and do while loop is the

following, you have statement that will be executed without testing the expression even

once. So, when you start executing the loop, you will first execute the statement without

testing the expression, and after testing the expression you will go back and test the loop

expression, if it is true and you start executing the loop again. So, the first execution of

the statement there is no test done for that.

(Refer Slide Time: 02:13)

So, let us see the comparison between our loop while loop and do while loop. So, we will

look at the following problem, you have to read numbers and out output in integer until a

minus 1 is seen. Now the difference is that in this problem you have to include the minus

1. So, read all the numbers up to an including minus 1, and print all the numbers. So, we

will have the following programs using while loop and do while loop. Now the important

thing to notice is that the while construct and the do while construct are equally

expressive. So, you cannot right any more new programs using the do while construct,

then you could using the while construct, but certain kinds of programs or easier using or

shorted using the do while construct. For example let us all this problem using the while

construct. So, what you do initially is, you declare a variable then scan the variable; if the

variable is minus 1, you immediately exit out of the loop, and print minus 1 n finish the

program.

If the number is not minus 1, you print the value and scan the next number. Number you

scan this not minus 1, you just print it and repeat the loop. If it is minus 1, you exit out of

the loop and print the minus 1 that you show. So, here is the logic using the do while

loop, in using the while loop. And notice that when we existed out of the loop we needed

a printf statement, and before you yes, enter the loop we needed a scanf statement. So,

this was the structure of the program. This problem can be elegantly solved using the do

while loop. What you initially need to do is to declare a variable, then scan the variable

and print it any way. Either the number is minus 1 or it is not. In any case we need to

print it.

So, go ahead and print it then test whether the number was minus 1. If its minus 1, your

done and you exit out of the program. If it is not minus 1, you go back and scan the next

number and print it. So, this is a program that we have seen where you could do this

same think with the while loop. The only difference is that the do while program is

shorter. And please be careful about the syntactic difference between the while loop and

the do while loop, notice the semicolon at the end this causes a lot of confusion when

you compile the program it is easy to miss this.

(Refer Slide Time: 05:05)

If you are new to C programming, you can strict to one particular loop. As I said before

you cannot right any new programs that you can do is using the do while loop, then you

could previously do using the while loop. So, you can right the same logic, it can right

the same number of programs using the while loop, and the do while loop it gives you no

further power. So, it is recommended that you strict to one loop pick while or pick do

while whatever you do, but strict to that loop in when you right the program. When you

are comfortable with one of the loops programming using the other loop becomes easy.

(Refer Slide time: 05:51)

So, let us try to solve a problem that we have already seen, which is to find the length of

the longest contiguous increasing sub sequence ending in minus 1. The difference that

we have is that earlier we did not include minus 1 in the sequence when you computed

the length of the sequence, now we will include minus 1. So, here is the program to do

that and the logic - the core logic, so here is the initialization, and here is the loop logic,

and the final check.

So, if you recall from the lecture which covered the problem solving the longest

increasing sub sequence, then you will see that the main structures in the code. The main

lines of logic in the code are pretty much the same. All I have done is to change the

while logic to the do while logic. And let see what that has a complete for us. So, what

this does is that you will scan a particular number, if the particular number is bigger than

the previous number, then you extend the sequence. If it is less than or equal to the

previous number, then you stop this sequence and started new sequence, this was the

logic.

And when you start a new sequence the length is new start with 1. Then you say current

equal to the next number, and previous equal to the number that was just red. So, the

logic here is that the testing for whether the currently rate number is minus 1 is done at

the end of the loop. So, is the first number is minus 1, you just do all this and then say

that the length of the increasing sub sequence is 1, then you test if the currently rate

number is minus 1 or not. If the currently read number is minus 1, then you are already

done and you exit out of the loop. Then you check whether max length is less then length

as before. ((Refer Time: 08:26)) difference between this logic, and the logic that we have

seen before is that we do this execution without testing whether the currently rate

number is minus 1. So, automatically what happens is that if the number is minus 1, all

these steps will be performed before we test that the sequence has ended. So,

automatically we ensure that minus 1 is also included when we calculate the increasing

sub sequence.

