
User-Centric Computing for Human-Computer Interaction
Prof. Samit Bhattacharya

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 09
Introduction to User-Centric Computing

Hello and welcome to the course User-Centric Computing for Human-Computer

Interaction. This is lecture number-9. So, far what we have learned in the previous

lectures let us quickly recap.

(Refer Slide Time: 00:49)

So, in the earlier lectures, we have seen how to engineer an interactive system; in other

words how we can basically think of building a software for an interactive system in

terms of software development lifecycle stages. Now, these stages are essentially a way

to structure our thinking process about creation of the software.

(Refer Slide Time: 01:22)

What are the objectives of these stages? So, with the development of a software by

following a software development lifecycle, we want to ensure that the developer get to

know the user that is very important. So, first thing is know the user. Now, the stages at

designed denotes as that developer gets to know the user through the conduction of field

studies such as contextual inquiry and similar things.

With this knowledge of the user, they can identify user characteristics that is another

requirement, another objective that we want to achieve by following the development

lifecycle. And the ultimate objective of course, is to incorporate all these things the

knowledge and the characteristics in the final product, so that we can make the product

usable. So, this is essentially to ensure that we follow an user-centric design approach

where we are incorporating the user in the design either as an active participant or a

passive participant in the design process.

(Refer Slide Time: 02:36)

However, the process in itself does not help the designer translate the requirements into

design. So, essentially when we are talking of is the process, its primary objective is to

let the designer learn about the user, let the designer identify their characteristics and

then translate the knowledge into the design of the system. Now, the process in itself

does not tell us how to translate the knowledge into the design.

So, essentially what the designer is left with? The designer is left with his or her intuition

and past experience based on which he or she wants to or tries to come up with the best

possible design. This approach of course, as you can understand, this approach is

somewhat informal. So, there is no standard set of rules guidelines or anything to tell us

exactly how to do this translation, how to translate the knowledge of the user to the

design of the system, so that the ultimate product becomes usable.

Now, this informal nature is of course, not a very good idea if you try to understand

things informally, then it leaves many things to interpretation of the person who is

translating.

(Refer Slide Time: 04:03)

But it we have a better understanding of the underlying computations involved

underlying computations that involved the users or in other words user-centric

computing, then we can evolve a more formal and systematic process to design and

evaluate interactive software. So, what we need is essentially a better understanding of

the underlying computation which we are terming as user-centric computation, this is

one of the major objective of this course.

If we understand that, then we can evolve a better mechanism or a more formal and

systematic process to design and evaluate interactive system, so that it will help both in

design as well as in evolution. So, in other words, we need to understand the

computations better, so that we can understand the overall process in a more systematic

manner and we can transfer this knowledge to others who wants to design such system.

Also this knowledge of or better understanding helps us in evaluating the final system. In

fact, there is other advantages as well we would be able to basically automate some

aspect of the design process if we understand the underlying computation.

(Refer Slide Time: 05:27)

Then if we would be able to automate some aspects of the design which in turn is going

to help us in reducing the overall design time, effort and consequently the cost.

(Refer Slide Time: 05:45)

Now, these considerations reduction of time effort and cost are of course, powerful

considerations if you consider from a practical point of view. So, if we can achieve that

then definitely it will help in making the product practical. Thus, if we can understand

the underlying computation we can realize the product in a more practical way which

makes it worth looking into the idea of user-centric computing more closely.

(Refer Slide Time: 06:11)

So, what we need to understand is basically what is the computation underlying this

whole process of the development of user-centric system. Before we try to understand

this computational aspect of the design of user-centric system, let us first briefly recollect

our knowledge of computation.

What we mean by the term computation? Most of us probably or most of you probably

have learned about the idea of computation in your undergraduate courses. So, there you

probably have come across this term in a different context rather than development of

software systems, but here we will try to understand this term in its traditional way, and

we will try to link that understanding to the development of interactive systems.

So, when we say computation and more precisely what we mean is algorithmic

computation. Remember that we said that understanding computation will help us in a

more formal and systematic understanding of the process. Now, formal and systematic

understanding comes only when we are talking of algorithmic computation. The term

algorithmic computation is a specific term which has a specific meaning. What is that

meaning?

(Refer Slide Time: 07:31)

It is nothing but the application of a step-by-step procedure which in other word is the

algorithm that transforms a finite input to your finite output in a finite amount of time.

So, essentially what we are referring to here is the application by the by the use of the

term computation what we are referring to here is the application of a step-by-step

procedure, which is the algorithm that transforms an input to an output in a finite time.

For a better understanding, what we need is basically to know a model of computation.

(Refer Slide Time: 08:24)

When we are talking of algorithmic computation, we are assuming certain things which

in the previous definition which we have shown here. The computation is application of

a step-by-step procedure; here we are assuming certain things which are not explicit. So,

if we make those explicit then what we are talking of is a model of computation. So, in

order to understand this idea of algorithmic computation what model we assume, what

model we refer to, this is very important, because unless we know the model will not be

able to understand the n idea of computation.

(Refer Slide Time: 09:16)

So, what is the model? Let us start with the definition of digital computers proposed by

the pioneer Alan Turing, way back in 1950 in the article Computing Machinery and

Intelligence. According to his definition of digital computers, we can say that the digital

computers may be classified amongst the discrete-state machines. This term is very

important digital computers may be classified amongst the discrete-state machines.

These are the machines which move by sudden jumps or clicks from one quite definite

state to another.

So, the other important term is movement by sudden jumps or clicks from one quite

definite state to another. These states are sufficiently different states are sufficiently

different for the possibility of confusion between them to be ignored. So, there are a few

important concepts hidden in this definition proposed by Turing that is discrete-state

machines which are machines which move by sudden jumps or clicks from one quite

definite state to another. And these states are sufficiently different for the possibility of

confusion. So, you should be able to distinguish them without any confusion. And this

definition is widely followed.

(Refer Slide Time: 10:48)

So, essentially from the theoretical standpoint when we talk of a model of computation

we are referring to a state machine or a discrete-state machine. In other words, we

implicitly assume a machine note that we are implicitly assuming a machine to do the

computation which has states is called the Turing machine.

(Refer Slide Time: 11:07)

What are the states that is a very important idea state of a machine or discrete-state

machine. So, essentially when you talk about states, what we are referring to is a set of

variables. Now, the definition of state is then very simple it is simply a set of variables

which defines a state. In a particular state, these variables gets some values.

So, when the variables are instantiated with values, we get physical realization of a state.

And in a computation, it is a step-by-step process as you probably can recall from our

earlier discussion. So, in the first step is basically there is an initial state at which the

competition starts.

(Refer Slide Time: 11:55)

Now, in each step of the algorithm or the step-by-step procedure, the values of the state

variables changes; so, each step essentially is meant to change the set of state variables,

so that a new state of machine is obtained. And, when the computation ends, when we

reach a final state which is often called a goal state; so, essentially what we do in a

mathematical computation or algorithmic computation, we start with an initial state

where the a set of values are used to instantiate the state variables.

Then we perform the steps in each step the set of values assigned to the variables

changes we obtain a new state, and this process continues till we reach a final or goal

state that is the idea of computation, where we are implicitly assuming that there is a

discrete-state machine to implement the idea that is traditional view of computation.

When we are talking of a computer engineer, who is more concerned about

implementing a system practical system like a computer, the idea of computation is

slightly different in its appearance.

(Refer Slide Time: 13:10)

So, this idea is more commonly or more popularly termed as stored program computer

which is a model to indicate the idea of computation. The original name was Von

Neumann model or Von Neumann architecture also sometimes called Princeton

architecture.

However, there are some there is some debate, but we may ignore that debate on what is

the right term to be used. More generic name will refer to that is called the stored

program computer. So, this is the model of computation which and a computer engineer

assumes to implement the idea of computation.

(Refer Slide Time: 13:59)

So, there are basically four things that are assumed as part of the model. First a

processing unit which contains the ALU or arithmetic logic unit and the various

registers; then a control unit which consists of instruction register and program counter.

A memory both, both RAM and hard disk or both primary and secondary memory which

contains both data and instructions, and finally, some input and output mechanism.

So, the four things that a computer engineer assumes as a model of computation are to

repeat a processing unit, a control unit, a memory and the input and output mechanism.

So, here what is the algorithm that is basically the set of instructions that are stored in the

memory.

(Refer Slide Time: 14:50)

And, that is what the term stored program refers to in the term stored program computer.

(Refer Slide Time: 14:55)

And, it is assumed or that is the idea of implementing this model of computation that

these instructions are fetched from memory and executed by the CPU. So, we have a

memory where the instructions are stored they are fetched from that memory, and then

executed by the processing unit or CPU by following certain controls.

(Refer Slide Time: 15:30)

Now, what is the result of the execution? Execution of an instruction can result in either

updation of the memory main primary or secondary, production of some output to the

user or both. So, I can execute an instruction to update both memory as well as produce

some output.

So, earlier we have seen one model of computation that is the discrete-state machine as

explained by Turing. Now, we have seen another model which is more popular among

the computer engineers which is the stored program computer or the Von Neumann

architecture or Princeton architecture are they related that is of course, one important

question or are they totally different.

So, when a traditional computer science person thinks of an algorithm and when a

computer engineer thinks of an algorithm from a theoretical point we are talking of

discrete-state machine, from a from an engineering or practical point of view we are

talking of a different model that is the stored program computer. Are they equivalent?

Clearly they are equivalent stored program computer can also be thought of as a state

machine. How, remember that a state is defined as a set of state variables.

Now, in a stored program, we can define a set of state variables in the same way. For

example, the registers the content of the memory, the content of the program counter, the

content of instruction register these all these we can talk of as state variables. So,

whenever the content of registers or the program counter or the memory gets a specific

set of values that is one state, when these values changes we get another state.

And in the execution of any software, our objective is the same. We start with an initial

state which is defined by the set of values that are there in those registers or program

counters or memory, and then the stored program gets executed one by one after being

fetched from main memory. Then during execution as we have already mentioned the

memory content may be updated leading to a different state. And this process continues

till we get a final state where a specific set of loser they are assigned to the state

variables and there may be some output.

So, conceptually idea of computation in a discrete-state machine and an idea of software

execution in a computer are same both referred to a model of computers and which it is a

discrete-state machine or equivalent to a discrete-state machine, and both of which refers

to a step-by-step process or algorithm. These algorithms are used to change the state

from one initial state to the goal state and that is the similarity between the two. So,

essentially when we are talking of building a software, we are talking of basically a

mathematical computation.

(Refer Slide Time: 18:37)

So, the simple take away from this discussion is that we can equate computation to the

change of states in a state machine, or more specifically the process of taking the

machine from the initial or start state to a goal state. So, computation is equivalent to the

change of state. And this change of state starts with an initial state and the process that

takes the machine from the initial state or start state to the goal state is computation.

(Refer Slide Time: 19:10)

So, what is the key challenge here? There are two challenges, one is to define the states,

and the other one is to design the transitions. So, essentially what should be the set of

variables that define a state and how we can change the values of the variables, how is

perform a transition from one state to another that leads to the goal state. Now, these

challenges there in the idea of computation.

Now, let us try to understand the key difference between mathematical computation and

when we are talking of computation in interactive systems, essentially computation in

software which is part of the interactive system.

(Refer Slide Time: 19:49)

So, in mathematical computation the states are typically defined with discrete variables

having finite domains, and the transition happens from one well defined discrete-state to

another, so that is the traditional definition of computation as we have already discussed.

(Refer Slide Time: 20:12)

What happens in the case of interactive systems, can we still go by this definition that a

state is a set of discrete variables which are well defined and that is the difference

between a purely mathematical computation or the idea of computation in the context of

interactive systems. So, when you are talking of computation in interactive software, it is

not possible to simply go by the traditional definition.

(Refer Slide Time: 20:41)

Because here what we talk of when we talk of state, it is no longer an abstract

mathematical set of values which characterizes the machine, it is no longer the case.

(Refer Slide Time: 20:51)

Why, because here along with the machine we also have to think of the user the human.

So, we must also consider the state of the user. Now, state of the user is something which

is not there in purely mathematical and abstract computation.

But if we do not consider it, then definitely our idea of interactive system which is

supposed to be usable will not work, because the usability comes only when we consider

the human side of the interaction the users. And if we do not consider the users in the

definition of states, then we cannot talk of user-centric systems. So, therefore, we need to

redefine the idea of computation in the context of user-centric system.

(Refer Slide Time: 21:31)

What is this definition? So, essentially in this case when we talk of computation we refer

to a change of state the same way we have said earlier from initial state to goal state,

again in the same way we talked of earlier, but with a twist that now here a state

encompasses both this is important both the state of the computing machine and the state

of the user.

So, here competition essentially is the same thing that is taking the system from the

initial state to the goal state where the system state essentially refers to or combines both

the state of the machine the computer and the state of the users together.

(Refer Slide Time: 22:31)

And when we talk of user state, state of the user, what we refer to it is basically the state

of the mind or sometimes more popularly it is called the state of cognition or cognitive

state. So, that is important that the idea of computation in the context of interactive

system software is redefined.

Now, we are referring to computation as a step-by-step procedure that takes the system

from one initial state to the goal state where the system is defined in terms of its states

which combines the state of the computer and the state of the user. The user state

essentially refers to the state of mind, state of the mind of the user or the cognitive state.

(Refer Slide Time: 23:20)

So, what is this cognitive state or what is cognition? According to Oxford English

Dictionary, cognition is the mental action or process of acquiring knowledge and

understanding through the use of thought experience and the senses. So, essentially

cognition refers to a process of acquiring some knowledge and understanding the

knowledge through the use of thought, our experience and our senses. So, it is a process.

(Refer Slide Time: 23:51)

 Now, during this process at any instant we can define the state of mind or cognitive

state. Now, this cognitive state essentially reflects or represents our behavioral aspects

how we perform the process how we behave to perform the process that leads to the

particular state of cognition or cognitive state. So, essentially when we are talking of

state we are talking of capturing the behavior of the user.

How easy it is to capture cognitive states? So, earlier when we are talking of purely

mathematical computations we talked of a state as a set of variables, now it is relatively

easy to define the set of variables for an abstract machine because everything is in our

hand, we are free to define our set of variables. Of course, it is not as easy as I am

saying, but it is relatively easy we service defining a set of variables for cognitive state

because for the simple reason that we do not know how cognition works, we still do not

have complete knowledge of human cognition.

(Refer Slide Time: 25:00)

So, essentially whatever propose whatever we say that ok, these set of variables refer to

the state of cognition that is still based on some incomplete knowledge. So, we can at

best say that it is an approximate representation of cognition rather than an actual

representation. Unlike in the case of discrete machines where we can actually define our

set of variables because the machine is defined by us.

So, defining cognitive state is not an easy thing. And when we are talking of interactive

systems where we need to define cognitive state as well as system state combine them

together to define or understand cognition, clearly that is adding one more dimension to

the to our understanding of computation which is a difficult thing to do.

One good thing about this idea of cognitive state is that even if we do not have the

complete knowledge, still we can represent cognition in some approximate way.

(Refer Slide Time: 26:02)

It is not necessary to fully understand the idea of and the intricacies of cognitions, we can

still represent it in some approximate way, and these approximations are good enough

for practical purpose. So, if we want to implement the idea of cognitive state cognition in

building interactive systems softwares, we can still work with approximate

representation of cognition which we will see in our subsequent lecture.

So, just to recollect what we have learned so far. So, first of all we trying to understand

the idea of user-centric computation because earlier we have seen that the user-centric

software can be developed following an iterative lifecycle, we have discussed the stages

of the lifecycle, but this knowledge although is helpful in structuring our thought process

about the development, still does not give us a formal way of understanding the design.

So, through this process, we may get to know the user and their characteristics, but how

to translate that knowledge to design is still informal, still dependent on our experience

and intuition by our, I mean the designers experience and intuition. If we understand the

computational aspects of the software, then that informality may be reduced we may get

a more formal and systematic understanding of how things work, how this design can be

achieved by translating the requirements into proper design.

In order to understand this computational aspects of the software, interactive software,

we started by discussing the traditional notion of computation which is essentially

referring to mathematical computations. This idea is based on the concept of a discrete-

state model of computation proposed by Turing. And in this model the computation takes

place by changing an initial state to a goal state through a step-by-step procedure or the

algorithm.

This model of computation is not relevant for interactive systems for interactive

softwares, where when we are talking of the state of the system we are referring to both

the state of the computer or the machine, and the user - the human. Now user state is

very difficult to define because it is the state of cognition or cognitive state and we have

inadequate knowledge or understanding of human cognition till today. But fortunately

we can still work with this incomplete knowledge; we can still come up with

approximate definition of human cognitive state for all practical purposes.

The next important thing that we should try to understand is that we talked of human

cognition, now earlier we have seen that software we are thinking in terms of

computation because the stored program computer is essentially equivalent to this notion

of mathematical computation. Then we tried to combine the computer with the human

through the merging of the state variables of computer and the state variables of users

mind or cognition.

Now, philosophically at a very philosophical level, before we go for this margin, we

should ask whether cognition can be thought of as computation that is very important,

unless we can think of cognition as a mathematical computation. Technically we should

not be merging the two distinct or different entities of a cognitive state and cognitive

process to that of system state and mathematical computation.

(Refer Slide Time: 30:22)

 So, the question is whether human cognition conforms to the idea of computation?

(Refer Slide Time: 30:26)

Or can we consider cognition as computation? This is as I said is very important unless

we can consider cognition as computational, we cannot merge the idea of cognition to

the idea of mathematical computation. So, we cannot get this understanding of

interactive system as a process of computation.

(Refer Slide Time: 29:53)

Fortunately, we can think of cognition as computation

(Refer Slide Time: 30:56)

This idea, that cognition is essentially nothing but computation or step-by-step

application of a process or algorithm which changes states. Actually this idea was very

old it appeared as soon as the idea of digital computers appeared which you can get if

you follow this article by Turing Computing Machinery and Intelligence which we have

referred to earlier. So, there this idea was mentioned already, so that is 70 years ago.

(Refer Slide Time: 31:34)

And over the years this idea further matured many theories and approaches appeared

proposed and a new discipline also appeared which is called computational psychology.

More about this discipline or the historical evolution, you can find in this article

Introduction to Computational Cognitive Modeling which was published in this

handbook of computational psychology.

(Refer Slide Time: 32:17)

However, the landmark or a major development in this evolution of this thought process

that cognition is computation came in 1972 with the publication of the book Human

Problem Solving by Alan Newell and Herbert Alexander Simon. So, this is a very

seminal book.

(Refer Slide Time: 32:28)

In this book what the authors proposed is that the process of cognition is essentially the

transition of or the movement from one state to another state in a space of states or set of

cognitive states called problem space. So, the states are mental states which was referred

to as mental operators. So, the state transitions take place with the use of mental

operators.

So, essentially what the author said is that we can think of the process of cognition as

transition between mental states aided by mental operators in a large set of such mental

states which is known as which they called as problem space. So, the key takeaways

from this theory is that there is always an initial state from the initial state this state

transition starts, then this mental operators are applied on the states.

So, this state changes to another state till it reaches the goal state. Clearly, these two are

similar; the idea of state in a mathematical computation and the idea of state in this

model by or problem solving mechanism proposed by Newell and Simon.

(Refer Slide Time: 33:48)

Here just like computation we can see that cognition is also viewed as a state machine

with states and state transitions. States are defined in terms of a set of variables. So, both

are considered to be similar. And since they are similar, then we can actually combine

the cognitive process and the computation process together to build an understanding of

computation in the context of interactive systems.

So, far we are trying to understand the idea of computation. And we have already

referred to the fact that here our objective is to understand that and user-centric software

that defines user-centric system from the point of view of an user essentially is nothing

but a computation; computation that changes states. So, it starts with a set of register or

memory values there is a stored program which is executed step-by-step which changes

these values till you reach a goal state where the desired state is arrived at that is one way

of understanding.

(Refer Slide Time: 34:57)

Now, based on this knowledge, we can try to have a simpler understanding. So, how we

can understand a software in a very simple way that is another thing that we should learn.

(Refer Slide Time: 35:21)

In fact, if you know or if you have read the history of computers, you may be aware of

that in the early days of computers a programmer needed to know the entire hardware to

build a software. And people who are able to do that because in those systems, the

number of functionalities were relatively less, the number of components were relatively

less, and those are simpler, but that approach is obviously not applicable today when a

computer has become very, very complex. It is not possible for a person to know the

hardware of a computer in order to build a software for it. So, essentially what approach

is adopted nowadays is a layered view of a system.

(Refer Slide Time: 36:13)

In this view, typically a system is represented as consisting of different layers. And a

particular programmer or a particular developer may concentrate on one layer based on

his or her or their team’s expertise. And it is sufficient to know about that particular layer

only and other layers the knowledge of other layers may not be required, and there will

be interfaces to interact with other layers. So, well-defined standard interfaces will be

provided rather than the complete technical knowledge of the layers.

(Refer Slide Time: 36:46)

(Refer Slide Time: 36:53)

And the simplest of this layered view can be the three layered view of a system. Have a

look at this three layered view. So, in this view, we can visualize a system as consisting

of three layers. At the top is the application software. These are the programs that the

user interfaces with; below that is the operating system which interfaces between the

hardware and the application software; and at the bottom is the hardware.

Now, when somebody is trying to build an application software, does he need to know

about the operating system or the hardware layers? It is not necessary because the

operating system provides APIs through which the application software can access the

hardware. So, only knowledge of those APIs would be sufficient rather than a complete

knowledge of how the APIs work, how the operating system works how it manages

various resources.

Similarly, when somebody working at this operating system layer, he or she did not

know about the application software layer what applications are going to be developed in

future whether to provide support for all of those, instead a standard set of APIs will be

developed which will be made known to all the developers. So, whoever wants to

develop application software can make use of the API. So, the operating system

developer did not know about the application software.

And the hardware developer or hardware designer whoever is building the hardware did

not know about how to create an operating system or application software, they can

simply provide again some standard interfaces, and some standards through with the

operating system developers will interact with the hardware. So, exactly which voltage is

there at a particular instant to define a particular binary value, and all these things all

these details or how the signals are propagating, all these things did not be the concern of

operating system developer.

So, here then what we are trying to achieve is basically separating out segregating

different tasks for different group of people, so that this entire thing becomes useful to a

user. Now, let us come back to the idea of interactive systems. So, if I talk of an

interactive system clearly that is at the application layer, it has nothing to do with the

ways because user interacts with it.

(Refer Slide Time: 39:45)

Now, to the developer of an interactive system how this application layer looks, let us try

to understand that.

(Refer Slide Time: 39:55)

So, a developer how a developer builds an interactive system software? To developer

this software is essentially a combination of many programs, so not one, but a

combination of multiple programs. How many programs are there?

(Refer Slide Time: 40:11)

At a very broad level we can think of a few 3 to 4 such programs. First of all there is a

program that should allow the user to provide input. To an application programmer there

should be a program to allow the user to provide input. The input can be provided using

some peripheral devices; it may also be necessary to keep track of the inputs provided.

So, the program should allow the user to provide input as well as keep track of what

input is coming from the user, so that based on that input some action can be taken.

(Refer Slide Time: 40:46)

Next to an application programmer to the programmer of an interactive software, there is

also a need to have a program that collects the legend state of interface. So, I have

provided input and certain changes took place. So, what is the current state of the

interface, there may be a need of that program.

(Refer Slide Time: 41:11)

And based on the current state, since we have already seen software as a computation

execution of a software as equivalent to computation, so a programmer may need to have

a program to compute the next state based on the current state. So, essentially the

program to implement the state transition mechanism.

(Refer Slide Time: 41:39)

And finally, a program to render the state or to give the output to the user; now, so there

are roughly we can think that there are these four states that comes to him comes to the

mind of a interactive developer. First of all there should be a program that allows a user

to provide input, because interactive system means users are supposed to interact with

the system. So, the program should let the user interact and at the same time the program

should capture the input the program should keep track of the input, so that it can be used

for further action.

Then as we have already seen it is computation. So, we need a way to capture the current

state. So, how to implement this definition of state and how to capture those state

variables, one program is required. Thirdly we require a program to implement the state

transition mechanism going from current state to the next state. And finally, we need a

program to render this next state to the user in a understandable form. So, based on this

knowledge; so these four programs that are apparently required to implement an

interactive system as perceived by a software developer.

(Refer Slide Time: 43:19)

We can come up with a layered view of the interactive software. Let us have a look at

this view and compare it with the earlier view. So, earlier we had application layer,

operating system and hardware. Now, this application layer is further divided as you can

see here we have introduced new sub layers. So, we have broadly two sub layers; sub

layer 1 and sub layer 2. In the first sub layer, we have three programs collector, input

provider and renderer. And in sub layer 2, we have interface state predictor.

So, the job of the collector is as the name suggests it is essentially to capture the current

state of the interface. Input provider again as the name suggests is to allow the user

provide input to the interface, and the renderer as the name suggests is to render the new

state. And in the second sub layer, sub layer 2, we have this interface that predictor

which essentially predicts the next state or implements the state transition mechanism.

So, those four programs are mapped to these four components. Three of those

components are organized in the form of sub layer 1; one component is placed in sub

layer 2. So, this collector essentially captures the current state; input provider is used to

provide input or let the user interact with the system. And based on this input and current

state the state transition is implemented as interprets state predictor which predicts the

next state. And this state information with the set of values for the variables passed on to

the renderer which renders the new state of the interface.

Does this layered view actually sufficient to capture the essence of interactive system?

As you can see we talked of four components organized into two sub layers, but none of

these components clearly capture the user-centric miss.

(Refer Slide Time: 45:47)

So, what is missing is that the user-centric considerations are not explicitly incorporated

in the layered view of the software. So, what we need is some other components which

explicitly capture the user-centric concerns, so that we can talk of this layered view as

representing a user-centric software, so that modification that refinement we will discuss

in the next lecture. So, we have reached the end of the lecture.

So, let us just summarize what we have learned. We started with the basic definition of

computation or mathematical computation, then we have equated this idea with the idea

of a computer engineer who thinks of computer as a stored program device. And the way

this device or machine works is similar to the way a discrete-state machine works which

is the traditional model of computation. So, essentially both the concepts are similar. So,

a software the way it works can be equated to the working of a discrete-state machine.

Then we have introduced the idea of cognition cognitive state and discussed that how the

idea of state in the context of interactive system is different from that of a purely abstract

state machine. Here the state refers to the combination of both state of a computer as well

as state of the user. And this user state is essentially the cognitive state which it has been

shown works in the same way as a state in a discrete-state machine. So, the process of

human cognition can be equated to the process of computation. So, essentially this

combination is justifiable is logical and we can combine these two concepts to define a

combined state of the system.

And finally, based on this knowledge, we can further simplify our understanding of a

software in terms of a layered view. So, in this layered view, we can view different

components that are typically are supposed to be part of an interactive system in the form

of layers sub layers. But whatever view we have so far discussed does not explicitly

incorporate the various user-centric concerns, and we need to modify it we need to come

up with a better view which we will discuss in the next lecture.

(Refer Slide Time: 48:22)

So, whatever we have discussed today are taken from a part of section 3.2 and section

3.1 from chapter 3 of this book. So, you will get all this material from this chapter.

Thank you and goodbye.

