
User-Centric Computing for Human-Computer Interaction
Prof. Samit Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 25
Case studies on the use of models

Hello and welcome to lecture number 25 in the course User - Centric Computing for

Human - Computer Interaction. Till the last lecture we have covered many topics related

to user models more specifically computational user models. So, before we proceed to

the next topic it is time to take a break and try to understand in a more detailed way how

to use these models in the design of overall interactive system.

So, in this lecture today we are going to see a few Case studies to understand the use of

the models in the design of interactive systems. Note that earlier we also mentioned this

point; however, we mentioned it at a very shallow level today we are going to discuss it

in more details with illustrative case studies. Before that as is the convention we will

quickly recap what we have learnt so far and then we will proceed to the main discussion

for today’s lecture.

(Refer Slide Time: 02:00)

So, if we recollect so far in the previous 24 lectures we have learned about the idea of

interactive computing systems, a broad idea. This was followed by how to design an

interactive computing system, more specifically we focused on the use of software

development life cycle to build interactive computing systems. This was followed by

discussion on the idea of user centric computing for design, where we mentioned one

framework.

(Refer Slide Time: 02:39)

Along with that we also mentioned that the core component of the framework is the

computational user models.

(Refer Slide Time: 02:48)

And we had some introductory discussion on different types of such models, where we

identified a class of models that is our main focus those are called predictive models or

user centric computing models. Under the predictive models there are several

subcategory of models we have computational models of the users, formal models and

hybrid models, hybrid models we did not discuss. Under computational user models we

have context specific behavior models, simple models of human information processing

and cognitive architectures.

Like hybrid models we did not discuss cognitive architectures both these categories are

too complex and out of scope in our particular focus area. We have already discussed

several models that belonged to either computational user or formal models.

(Refer Slide Time: 03:47)

So, under this computational user models what we have discussed, we have discussed

classical models as well as contemporary models. Under the classical models we have

discussed the keystroke level model and the CMN GOMS model, both belonging to the

overall GOMS family of models, in addition we have discussed the Fitts law and Hick

Hymans law.

In contemporary models that is the category of models that have been developed to

design systems that we see around us at present, we have discussed 2 D and 3 D pointing

models also called the bivariate and tri variate pointing models. The Steering law, which

is used for modeling constraint navigation and behavior, the menu selection model

modeling the behavior of selecting from a hierarchical menu, mobile typing models and

touch performance model or the Fitts law. In the mobile typing model who discussed 2

models namely the Fitts diagraph model and the thumb typing model.

Along with the computational user models we also discussed formal models, essentially

we discussed about the use of formal languages formal specification languages to

represent dialogues. In particular we have discussed one language that is the state chart

and we briefly introduced the idea of using the language to build models of interactive

systems using state chart and also how to use the specification to verify properties.

(Refer Slide Time: 05:26)

So, we have got some fairly good idea of what are these models and for what purpose

they are used. Now, let us try to understand one fundamental concern here that is, how to

use the models in the design. So, the models that we have discussed were not part of any

system when we discuss those models we discussed them in isolation. Now, it will be

helpful for you to understand the use of these models in the overall software

development process. In order to understand how the user centric computing can help in

developing interactive systems software and we will do that in this lecture using case

studies for illustration. So, our case study will concern design of virtual keyboards.

(Refer Slide Time: 06:17)

Why we have chosen this case study? Because, we have already discussed the

corresponding models in the previous lectures, if you recollect two models we have

discussed the Fitts digraph model and the thumb typing model. Now these models will be

helpful in understanding how we can use models in order to build an interactive system

in this case a virtual keyboard and we will discuss this in terms of few example

keyboards.

(Refer Slide Time: 06:49)

If you may recall there are two types of user centric systems that we have discussed

earlier; one is the adaptive system and other one is the non adaptive system. In adaptive

system we mentioned that when we interact something changes either on the interface or

the way we interact whereas, in the case of non adaptive systems it is designed once and

the design remains the same throughout the usage of the system.

(Refer Slide Time: 07:17)

Now, the models that we have discussed earlier can be used to design either an adaptive

keyboard layout or a non adaptive layout. So, for both purposes we can use the model.

(Refer Slide Time: 07:30)

Along with the types of the designs these two types adaptive and non adaptive designs

we can also define scopes of the design accessories broadly two scopes can be defined.

(Refer Slide Time: 07:48)

What are these two scopes? One is semi automated design approach what this means, it

means that we can use the models to compare among a set of possible alternatives. So, in

our case in this particular case study we are concerned about virtual keyboard layouts.

So, there is a set of alternative layouts and we can compare using the models. The result

of the comparison is analyzed or inspected by the designer who then chooses the final

design. So, final design is chosen by the designer, this is the semi automated approach.

(Refer Slide Time: 08:28)

We can also make the entire design process automated. That means the comparison

between alternatives is done automatically by the system itself to arrive at a final design

so, here the involvement of the designer is minimal. So, these are the scopes, one is semi

automated where we are actually relying on the designers judgment. So, the models are

used to compare and produce some comparison results and based on the result the

designer chooses the best alternative in a given set of alternatives.

This process is automated fully or mostly in the automated design approach where these

comparison and the final design decision is taken by the system itself with minimal

intervention by the designer.

(Refer Slide Time: 09:19)

Now, we can summarize this overall objective of this model - based design approach in

the form of a flowchart. So, essentially what we are talking of is a model based design

approach. It has two types namely adaptive and non adaptive and two scopes namely

automated and semi automated. Now, we can organize these types and scopes in the

form of a flow chart as shown here.

(Refer Slide Time: 09:46)

So, the overall objective is the model - based design, now these design we can perform

for adaptive systems as well as non - adaptive systems and for each of these type of

systems we can go for either semi automated design approach or an automated design

approach. The last layer belongs to the scope and the intermediate layer belongs to the

design type as we have already explained before.

(Refer Slide Time: 10:21)

So, going by this flowchart we can have four possible design approaches.

(Refer Slide Time: 10:27)

One is model based non-adaptive semi - automated approach and in this context we are

concerned about virtual keyboard design. So, model based non adaptive semi automated

virtual keyboard layout design this is one design approach. Second approach is model

based non adaptive automated virtual keyboard design. Third is model based adaptive

semi automated virtual keyword design and finally, model based adaptive automated

virtual keyboard design. So, these are the four ways using which we can use the models

in order to design an interactive system.

Now, in the case of virtual keyboards we have chosen this as a case study to illustrate

these design approaches that is the main objective of this lecture. However, in the case of

virtual keyboard adaptive design creates some problem at this stage. So, it is difficult to

actually explain adaptive design of virtual keyboards because of several reasons. Let us

try to understand these reasons.

(Refer Slide Time: 11:41)

Now, when we talk of adaptive virtual keyboards or adaptation in virtual keywords it

refers to some changes that happen on the interface during typing. So, we start with the

design and during typing during use of that design something changes, that may be

changing interface that may be changing interaction as we have defined adaptive

interactive systems earlier. So, what is the objective, the overall objective is to make this

interface more usable. So, by making those changes we assume that the interface

becomes more usable.

(Refer Slide Time: 12:21)

However, these changes create the problem, because the changes that we make in the

adaptive layouts of a virtual keyboard do not point to a single design concept. So, each

change actually refers to one design concept and these changes can be made in many

ways. So, for a layout it is difficult to define a specific design that reflect the adaptation.

We can perform adaptation in many possible ways, what are those ways let us get some

idea.

(Refer Slide Time: 13:08)

During typing we can change the size of the keys so that is one way to adapt. So, the size

may become larger during typing. So, I want to type k, the size of the key k becomes

large compared to the other keys in the keyboard. So, that is one form of adaptation.

(Refer Slide Time: 13:29)

Alternatively what can happen is that we can change the set of keys that are likely to be

placed next so, instead of changing the size of the current key. So, when I said that one

strategy for adopting a layout is to change the size of key there are two possibilities.

What are these two possibilities, one is we can change the size of the current key to be

pressed or we can change the size of the set of keys that are likely to be pressed next

after the current key press and each of these refer to one design.

(Refer Slide Time: 14:07)

Sometimes we may not change size instead we may change the point of selection. So,

essentially the touch point which selects a particular key. So, that is kind of changing the

interaction rather than the layout.

(Refer Slide Time: 14:24)

There is a third possibility also we can rearrange the keys, in other words the key

positions change dynamically during typing. So, here we are not changing the size or

touch point instead what we are changing is the position, that is the rearrangement of the

keys on the layout.

(Refer Slide Time: 14:41)

And these are only some of all the possibilities the ways we can adapt layout the problem

is each of these refer to particular design and for that design we need to have a model.

So, each approach might affect the performance differently and in order to predict that

difference we require different computational models.

(Refer Slide Time: 15:15)

Now, if you can recollect earlier we have discussed two mobile typing models, the Fitts

diagraph model and the thumb typing model. These models are not designed for

modeling performance in the context of adaptive keyboards. So, we cannot apply them to

model performance of a user who is using an adaptive virtual keyword layout. And

unfortunately not much work has been done on the computational models for adaptive

keyboard typing performance.

So, what it tells is that we do not have models and since we do not have models it will be

difficult to illustrate the use of models in the context of adaptive keyboard design. So,

among the four possible design approaches, the two approaches that are related to

adaptive design namely semi automated adaptive layout design and automated adaptive

layout design are not possible to be discussed because we do not have the suitable

models. We will focus only on the design of non adaptive keyboard layouts.

(Refer Slide Time: 16:28)

So, let us start with the non adaptive semi automated design approach. So, how we can

use models in order to develop virtual keyboard layout that is non adaptive, where the

design approach followed is semi automated. Our objective is to show these approach in

light of the computational framework that we have proposed earlier, how to utilize the

idea of the computational framework to illustrate the design of non adaptive virtual

keyboard layout using a semi automated approach.

(Refer Slide Time: 17:04)

So, if you can recollect we have in the framework five modules. So, in the framework we

have five modules, 3 of the modules are organized in sub layer 1 namely the collector,

the input provider and the renderer. One module is there in sub layer 2 that is the user

state predictor. And in sub layer 3 there is the 5th module the interface state predictor

that is our framework.

(Refer Slide Time: 17:35)

Now, to explain the idea of design of non adaptive virtual keyboard layout following

semi automated approach, we do not require all these five modules. Instead what we

required, are four modules, the input provider module is not required. So, the first thing

we should do is modify our framework for explaining this particular situation.

(Refer Slide Time: 18:04)

So, here we have shown it with a cross in the connection. So, the input provider module

is not required we are living it out and the remaining modules stay in the framework

which explains the, implementation of semi automated design approach for non adaptive

virtual keyword layout design.

(Refer Slide Time: 18:29)

Before we go for further explanation how the four modules are implemented what we

should do in those modules to implement them. We start with the assumptions that we

make in order to use the framework to implement the design approach. The first

assumption is that the designer is experienced. So, the designer already has some

experience of designing similar systems that is the first assumption designer is

experienced.

The second assumption is based on the experience the designer can come up with a set of

alternative designs or the layouts and wishes to choose the best among those. So, two

things you should note, one is the designer is capable of coming up with alternative

designs and second thing is that among those alternatives the designer wishes to choose

by himself or herself the best one.

(Refer Slide Time: 19:37)

So, then how the framework can be implemented to design non adaptive virtual keyboard

layout let us see. So, we have already assumed that the designer comes up with

alternatives, for each design alternative the designer makes use of the framework which

you have modified by removing the input provider component, rather the designer make

use of the implementation of the framework to obtain user performance for the design

and based on the performance reported by the framework implementation. Compares and

chooses the best layout, which is the best layout that maximizes the performance.

In the case of virtual keyboard the performance is represented by the text entry rate so,

whichever layout maximizes text entry rate is chosen by the designer. Now, let us use

some specific keyboard examples to understand the concept better.

(Refer Slide Time: 20:53)

Consider the design of a keyboard which has only 26 lower case letters. So, we are

excluding capital letters and other punctuation marks and numeric characters. So, along

with these 26 lowercase letters the keyboard also has this space key. So, there are there is

a total of 27 keys to be arranged on the layout. So how many layouts are possible with 27

keys? In how many different ways we can arrange these 27 keys?

(Refer Slide Time: 21:37)

If you think then you can come up with a figure like, 27 factorial, where we can assume

that no keys are repeated and all the keys are of the same size. If we relax this these

constraints then the number will be even larger, but in any case even if we have these

constraints. So, we can see that the 27 factorial the number of possible layouts is a very

large number in itself.

(Refer Slide Time: 22:10)

So, the number of possible alternatives is very large. So, all the layouts in this set of

factorial 27 number of layouts are possible candidates for a design and we can safely say

that this number is very large number for practical consideration. So, what is the

advantage that an experienced designer has? Essentially, based on experience and

intuition a designer can come up with very few alternatives and experienced designer

need not check this large number of layouts to come up with appropriate alternatives.

Instead experience and intuition helps to come up with less number of alternatives that

are manageable.

(Refer Slide Time: 23:11)

As an example, we can think of two alternatives which intuitively tells us that the

corresponding designs are likely to be usable. The first alternative is an alphabetic

design, what an alphabetic design means; it means that the letters on the layout are

arranged alphabetically the way they are arranged in the alphabet and why this design is

going to be good, because it is easier to remember the position of the keys.

So, user can gain familiarity with this layout quickly, because we are all familiar with the

alphabet and we know that the keys are arranged alphabetically. So, we know where to

look for a particular key in the layout.

(Refer Slide Time: 24:00)

The keyboard design may look like this is of course, one possibility. So, here as you can

see the keys are arranged alphabetically A is followed by B followed by C followed by D

the way they are included in the alphabet and it helps in learnability. We can learn the

layout quickly and also memorability we can remember the position of the keys easily.

(Refer Slide Time: 24:36)

Now, let us think of an alternative design that is a frequency arranged layout. So, what

this layout means, it means that we find out the frequency of occurrence of each letter in

text based on these frequencies we arrange them on the layout. Typically, the letters or

the characters that occur more frequently are placed towards the central region of the

layout and the more the character is away from the central region, the less frequent it is

in text. Why central region? Because it has been found that the central region draws our

attention before other regions. So, we prefer to keep them in the central regions.

One question is, how to get these frequencies? We can use a language corpus remember

that corpus is a collection of texts where the texts were collected following a systematic

and scientific approach and for a language we have corpus, which contains texts of that

language and using this corpus we can find out unigram probability distributions of the

alphabetic letters in those texts and that unigram distribution can give us the relative

importance of characters with respect to other characters in terms of frequency.

Now, why frequency arranged layout is likely to be a good choice because it reduces the

time to access letters during typing. So, essentially we are trying to reduce the typing

time and increase the typing speed and frequency arranged layouts are likely to help us

increasing typing speed. So, let us see one example of a frequency arranged layout with

this 27 keys.

(Refer Slide Time: 27:00)

So, the layout that is shown here shows one possibility and the arrangement is based on

the unigram distribution of English letters obtained from a written corpus of English

language.

(Refer Slide Time: 27:21)

Now, with the intuition with the intuition of the designer based on experience of course,

the designer can choose these two alternatives. The problem is which one among them

will be the best. Just by looking at the layout it is of course, difficult to identify the single

design among these alternatives in this case the two designs which one will be the best

and they are this model based approach becomes useful. Let us see how, let us see how

we can implement the framework so that we can choose the best among the two possible

alternatives or a set of possible alternatives using the models.

(Refer Slide Time: 28:15)

Recollect that with the Fitts diagraph model which is a model for single finger typing, we

can compute performance in terms of typing rate. Now for the two alternatives we can do

the same for each alternative we apply the Fitts diagraph model to compute performance

or the typing speed and the one that gives the better or the higher typing speed will be the

one that we should choose.

(Refer Slide Time: 28:43)

Now in order to compute the speed the model requires some information, what are those

information. The distance between keys or between the key centers because we are

assuming rectangular keys, width of each key, diagraph or bigram probabilities which we

can get from a corpus and the model constants, that is the constants A and B in the Fitts

law component of the model or the Hick Hyman law component of the model.

(Refer Slide Time: 29:21)

Now, the digraph probabilities and the model constants are pre computed and they are

independent of the layout, but the first two the distance between keys and the width of

each key represents the layout or specification for the layout. So, they are very much

layout dependent. So, then what we can do.

(Refer Slide Time: 29:50)

So, in the framework, we implement the collector in such a way such that we can collect

this information from the designer which information, the distance between keys and the

key width, width of each key. It may be implemented by providing an interface to the

designer for specifying these values that is the implementation of the collector module.

Now, collector module processes this information if required; that means, if there is

some conversion required or some rounding off required and so on and passes on this

information to the user state predictor model, remember that we do not have any input

provider module in this case.

(Refer Slide Time: 30:46)

Now, the predictor module implements the Fitts diagraph model. So, in this

implementation of the framework the predictor module is an implementation of the Fitts

diagraph model and it takes as input the layout specific and produces the typing speed as

output. The speed is passed on to the interface state predictor module.

(Refer Slide Time: 31:16)

In a very generalized situation this interface state predictor module should generate a

new layout or the specification of the layout to improve the typing speed. However, in

this case our objective is to compare rather than generate final layout. So, here our

interface state predictor module can be implemented simply. So, in this case what we can

do is basically we can modify this module. So, that the module is able to only pass on the

computed speed and the input layout as is to the renderer module.

So, here we do not need to generate new specification or specification for a new layout

instead we simply collect this speed information computed speed information from the

user state predictor module and the input layout specification and pass on these two

information to the renderer module. So, this is a very simple implementation of the

interface state predictor module. And what is the job of the renderer module?

(Refer Slide Time: 32:39)

So, it simply needs to render the computed speed to the user. So, along with that it also

renders the layout which is already specified. So, essentially the renderer modules should

be implemented in a way such that it is capable of displaying the layout and display the

typing speed on the screen that is the implementation. So, to summarize in order to

implement the framework to develop non adaptive layout which is designed using semi

automated approach, what we can do?

We can rely on the designer to come up with alternative designs and for each design we

use the framework to compute the speed and based on the speed that the framework

outputs the designer makes a choice. Now, how the frame work can display the speed or

how the framework can output the speed information, which is a major of typing

performance? So, essentially the input provider module is not there. So, the collector

module should be implemented in a way such that the designer is capable of specifying a

layout in terms of distance between keys and the key width.

This specification is passed on to the user state predictor model, the user state predictor

module in this case it is a simple implementation of the Fitts diagraph model or it may

implement the thumb typing model depending on which kind of behavior we want to

predict. Now, this model computes the speed based on the specification and pass it on to

interface state predictor. The interface state predictor in turn passes on the speed as well

as the input specification to the renderer module.

So, the input specification also comes to the interface state predictor through the user

state module and both these are passed onto the renderer module. So, renderer module

displays the layout the specified layout along with the typing speed computed with the

model. And these are noted down by the designer. Once it is done for all the possible

alternatives the designer can compare the typing speeds and choose the one that gives the

best typing speed. Now, let us discuss how we can implement the framework for

automated non adaptive keyboard design.

(Refer Slide Time: 35:38)

So, in order to understand this automated design approach we will make use of one

algorithm for automatic design of virtual keyboards that was proposed by Zhai et al in

2002, this is one “metropolis algorithm.” Now before discussing the implementation of

the framework, first let us try to get the idea behind the algorithm.

(Refer Slide Time: 36:06)

What this algorithm states, it states that the keyboard can be considered as a system of

“molecules”, where the keys are the molecules and together they represent the keyboard

“system” which is a molecular system as we find in nature. So, the overall layout

represents a “molecular system” having a specific “energy value” which is again a

natural thing.

What is the energy value in case of our keyboard system, it is defined as the average

movement time for a layout. So, the average movement time for the layout is the

“energy”. Now a keyboard with this specific average movement time is said to be in the

specific energy state.

(Refer Slide Time: 37:00)

And you may be aware that what happens in nature is, any “physical system” tends to

move from “high” energy state to “low” energy state. So, that is the natural tendency of

any physical system, here we are equating keyboard to a physical system. So, in this case

also our objective is to take the keyboard from a high energy state to a low energy state.

(Refer Slide Time: 37:35)

So essentially what the algorithm assumes that, we have a keyboard layout which is

having a specific energy state and the algorithm tries to find out another layout which has

a lesser energy state essentially from a higher energy state the algorithm tries to take the

keyboard system to a lower energy state and the way energy is defined it indicates that

the keyboard with lower energy state will have lower movement time.

Now, as we know the average movement time is inversely related to typing speed: so, the

more the movement time the lower is the speed and vice versa. Now, our objective is to

take to a layout that minimizes the average movement time so that the typing speed

maximizes. And minimization of the average movement time indicates that the objective

of the algorithm is to take the keyboard system to a energy state having the lowest

energy.

(Refer Slide Time: 38:43)

So what it does several steps. So, there are few steps in the algorithm in step 1 what we

do is, we create a new state of the system through a “random” walk. So, we are having a

layout at the beginning the “previous state” and we pick a key “randomly” and move it in

a “random” direction by a “random” amount to generate a new layout or “new state” of

the “system”.

So, each layout corresponds to a state. So, what we do is, essentially from the current

layout we pick up a key randomly and move it in a random direction by random amount

to generate a new layout or a new energy state.

(Refer Slide Time: 39:36)

Then we compute the energy of the new state and note that we already have the energy

of the previous state, how to compute the energy. We use the model to compute the

average movement time. If you recollect our discussion during the Fitts digraph model

so, before we computed the typing speed we first computed average movement time. So,

up to that point whatever we have discussed we used that model to compute the average

movement time which is essentially the energy of the new state.

(Refer Slide Time: 40:17)

And in step 3 we decide on what to do with the computed new state. If the computed

energy of the new state is equal to or lesser compared to the previous state, we replace

the previous state with the new state, because we are moving towards lower energy state

and repeat the steps. Now, what happens when the new state is having a higher energy

than the previous state, should we keep the previous state or not? The answer is not very

straight forward, because there is a concept called local minima.

So it may happen that during the computation the overall system got struck in a local

minima and there even if some change happens, that may not reflect that the system is

moving or not moving towards a lower energy state. So, what we do there is, we

compute “a probability”, probability of retaining the new state or discarding the new

state.

(Refer Slide Time: 41:46)

So, that probability is computed with this expression, where delta E represents the energy

difference between the two states, k is a constant and T represents something equivalent

to “temperature” in a physical system, which is a conceptual entity that is manipulated by

the designer of the algorithm or the implementer of the algorithm.

(Refer Slide Time: 42:15)

Now, once we compute P we compare that P value with a “pre-defined” threshold, now

if the computed P is higher than the threshold then we replace the previous state with the

new state and repeat the step. In case P is less than the predefined threshold then we do

not replace the state we keep the previous state and repeat the steps so, in that case we

actually discard the new state. So, we will not actually go into the details of why this is

so, why we perform all these steps, what is the reason behind this.

If you are interested you can refer to the reference material that will be mentioned at the

end of this lecture, the original work as well as the explanation can be found in the

reference materials. Now, let us see with this basic understanding of the algorithm, let us

see how we can implement the framework.

(Refer Slide Time: 43:18)

So, the algorithm starts with an initial random layout; that means, initially we place the

keys randomly. So, the collector module that we design should be implemented with the

facility to specify this initial layout. In other words, we should be able to specify the key

width and key sizes where the layout is randomly generated.

Now, the user state predictor implements the “energy” computation. So, here you should

note that we are not implementing the full FD model as we did in the previous case, but

only a part of it which computes only the average movement time. So that part of the FD

model is implemented in the user state predictor module.

(Refer Slide Time: 44:10)

Now, the computed “energy” is sent to the interface state predictor module. The interface

state predictor then chooses between the previous state and the new state according to

step 3 we discussed earlier that is calculation of probability and based on the threshold.

So, here the implementation of the interface state predictor module is not trivial as in the

previous case, here we are implementing step 3 of algorithm in the interface state

predictor module.

In that step if we recollect what we did is, computed a probability and compared that

value with the threshold to determine way that to keep the previous state or to discard it

and replace it with a new state. Along with that we also compared the energy difference

between the 2 states solve this comparisons computations are implemented as part of

interface state predictor module.

Now, this module outputs the chosen layout between the previous and the newly

computed layouts and it generates a specification of the new layout and sends the

specification to renderer. So, we should be able to implement the interface state predictor

module. So, that it can generate a layout specification indicating the key positions,

distances, width and so on whatever is required.

(Refer Slide Time: 45:59)

Now, this layout may be the final output so, renderer displays it on the computer screen.

Otherwise, the layout information specification is sent to the collector again to

implement the iterative procedure. So, the renderer needs to decide whether to display

the layout as final layout or should not display and let the collector take over again to

implement the iterative procedure.

(Refer Slide Time: 46:30)

In order to do that what we can do is that, we can use one flag actually the interface state

predictor needs to send the new layout specification as well as the information on

whether to display it or not. Now, to do that the predictor module can use a simple

Boolean flag, true means layout to be displayed and false means renderer should not

display the layout and collector should take over.

So, the renderer should check the flag and based on the flag value decides on what to do.

So, that can be a simple implementation of the automated design approach for non

adaptive virtual keyboard layout.

(Refer Slide Time: 47:22)

So, the idea is illustrated here, the collector implements interface here to take initial

layout specification the collector also receives and processes intermediate layout

specifications from the renderer. So, both the tasks the collector performs and it should

be designed implemented accordingly.

User state predictor implements the average movement time computation part of the Fitts

diagraph model here. The interface state predictor implements the step 3 followed by

step 1 of the algorithm, the new layout is passed on to the renderer along with the display

information. The renderer intern renders the final layout, but intermediate layouts it does

not render in that case it passes on the information to the collector so, that is the job of

the renderer. So, this is how we can implement the framework to design virtual keyboard

layouts using an automated approach.

(Refer Slide Time: 48:25)

So, what the algorithm does, it is initially explores the whole design space that is the all

possible designs all layouts with the specified number of keys and it determines the

layout with the minimum average movement time which it can do without the

intervention by the designer. So, there is no intervention by the designer hence, it is

called an “automated” approach. So, the implementation of the framework takes care of

this automation part by implementing the iterative process. So, with this we are expected

to be able to implement the framework so that we can adopt a specific design approach.

Now, the case studies that we have covered so far are used to illustrate the idea of

implementation of the framework to adopt specific design approach, out of the four

approaches that we have learned earlier.

(Refer Slide Time: 49:47)

Now, the point is in this case studies or earlier also we have seen that we are relying on

performance measures, in the particular case study of virtual keyboard design we relied

on only a single performance measure the typing speed. And we assumed that the best

layout is the one that helps or likely to help the user achieve the maximum typing speed.

(Refer Slide Time: 50:13)

Now, if we can recollect from our earlier discussion on usability it is actually the concept

that rests on more than one measures. So, the natural question to be asked at this stage is,

can we say that the design that we have obtained following a model based approach

which relies on computing some performance measure based on our computational

framework leads to “usable design”?

So, we are using our framework to implement some design approach, but the core

concept in the framework is computation of the user behavior, which we represent by

implementing some computational user models where the output is some performance

measures. Now, these performance measures can be indirectly related to usability as we

have discussed earlier. So, the question is, can we still call our final outcome of the

frame work that is the design as usable directly?

(Refer Slide Time: 51:41)

We should note that this model based design is not an end in itself, but a means to an

end. So, let us elaborate, what do you mean by this.

(Refer Slide Time: 51:54)

So, what is our overall objective, we want to build an interactive software product. So, in

this case, a virtual keyboard which requires us to follow the software development life

cycle stages. Now, there are several stages if you may recall and following all those

stages are time consuming definitely because each stage requires lots of effort. Now, in

order to deliver a product rapidly, which is a very practical requirement.

What we want, we want to reduce the time taken to perform those or some of the stages

that is our wish, desire. There the model based approach can help, model based

approaches can play a significant role in that context of reducing the time taken to

perform software development life cycle stages.

(Refer Slide Time: 52:54)

So, let us try to understand that in terms of the semi automated design of virtual

keyboards which we have discussed earlier.

(Refer Slide Time: 53:04)

So, recollect that there were two designs we mentioned, one is alphabetic and the other

one is frequency arranged. Now, these are the design alternatives and the designer has to

decide on one of them. Now, how the designer can make that decision? That is a very

crucial question.

(Refer Slide Time: 53:25)

So, if we follow traditional approach what will happen, the designer is expected to

follow the stages of the development life cycle which includes prototype building, testing

and refinement of the design idea iteratively and finally, empirical study and refinement

final refinement for the final design. So, this the designer has to do for each of the

alternative designs. So, in our case we have considered only two but in practice there

may be more number of alternative designs and the designer is expected ideally to follow

the stages of the development lifecycle to find out the quality of the designs and then

compare.

(Refer Slide Time: 54:16)

Clearly that takes time and the time is likely to be significant, it also involves effort it

also involves costs. So, we are for the time being ignoring those parts, but all these effect

the overall outcome of the design process. Now, what the designer can do, to avoid the

delay the designer can follow the model based approach to decide on the final design at

an early stage of the design life cycle and this decision will be based on the performance

measures that can be obtained by implementing the proposed framework.

(Refer Slide Time: 54:56)

And then the design can go through the other stages for further refinements. So, if we

can identify the problems early if we can identify a design early without going through

all the stages then we can focus on that design only and perform the stages to refine that

design to have better usability. And this is likely to cut down the time required for the

overall design by cutting down the time required to study and compare alternative

designs in a significant way.

(Refer Slide Time: 55:34)

But that still does not answer basic question, why the performance measures should be

considered as the basis for the early decision on the final design? So, we mentioned that

using the implementation of the computational framework the designer can compute

performance of a design and compute that for many designs then compare and refine it

by following standard approach. However, the first stage that is comparison relies on one

or few performance measures which are indirect measures of usability. So, why to rely

on these measures to determine usability?

(Refer Slide Time: 56:14)

To answer this question we need a deeper thinking, we need to look into the philosophy

behind the idea of usability and what is that.

(Refer Slide Time: 56:23)

So, let us forget the formal definition. So, what essential usability means in a very basic

term usability refers to the need and expectations of the user. A usable product is

expected to meet these two user requirements. When we talk of usability we are actually

referring to the ability of a system or a product to meet the needs and expectations that

are there for user before he or she goes to use the product or during the usage of the

product.

(Refer Slide Time: 57:03)

Now, we can intuitively correlate those user traits namely the need and expectations to

their performance measures such as typing speed for keyboard designs, why.

(Refer Slide Time: 57:21)

Let us take an example. So, when the typing speed increases intuitively we can say that

when the user feels comfortable and gets familiar with the layout. Now, this

comfortability with the layout of familiarity with the layout are related to the needs and

expectations of the. So, if we see that there is an increase in typing speed then it is likely

that the layout is able to meet user’s needs and expectations.

(Refer Slide Time: 57:57)

Now, here we are trying to optimize the performance measures. So, the assumption is

that the design that is obtained by optimizing the performance measures is likely to lead

to a usable design then the designs that do not. So, if you have a design where the

performance measure is not optimized then it is likely to be less usable than the design

where the performance measure is optimized.

(Refer Slide Time: 58:23)

Note the use of the term “likely”. So, this term signifies that specific performance

measures alone may not be the guarantor of improved usability. So, here we are

indicating some possibility rather than certainty.

(Refer Slide Time: 58:44)

And in order to come to a certain conclusion we cannot rely only on the model based

approach. What we need to do, we have to make use of other tools at our disposal those

are various evaluation techniques including empirical studies to get a clearer picture on

the usability of our design and the areas of possible improvement. So, in a later lecture

we will talk about those evaluation techniques in details.

(Refer Slide Time: 59:15)

But for the time being what we should note is that model based approaches are only a

means to reach a goal what is our goal to develop usable product and with model based

approach we can reach to that goal with the help of other techniques also. Only with

model based approach we cannot reach to that goal because we cannot say with certainty

whether the end product will be usable or not, for that we need to use other evaluation

techniques in conjunction with model based approaches.

So, we have got some idea of what we mean by the model based approach, how to

implement it in the context of interactive system design and why this implementation of

model based approach for interactive system design is going to be beneficial as well as

going to be useful in meeting our overall objective of coming up with a usable product.

(Refer Slide Time: 60:18)

The material that we have covered today is taken from this book the same book that we

are following for all the lectures, you can refer to chapter 6 section 6.2 to get more

details all the references for all the models and algorithms that we have discussed here.

So, in the next lecture we will start on another important topic in user centric computing

for human computer interaction namely empirical studies.

Till then thank you and goodbye.

