
User-Centric Computing for Human-Computer Interaction
Prof. Samit Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 24
Formal modeling of user-computer dialogue

Hello and welcome to lecture number 24, the course User Centric Computing for Human

Computer Interaction.

(Refer Slide Time 00:51)

So, before we start today’s a lecture, first let me briefly recollect what we have learned in

the previous lecture. In the previous lecture we started our discussion on formal models

particularly in the context of user centric systems. So, there we got introduced to some

basic ideas that is, what is formalism and what is a formal model and how it is different

in the context of user centric system.

Also we have briefly seen the use of the formal models, particularly in the context of

verification of properties. Now, these properties are supposed to be in directly related to

the usability of the system. So, essentially by verifying these properties by ensuring that

the system supports these properties, we can ensure that the proposed system or the

system that we proposed to design is usable. Now, in this lecture we are going to

understand or learn about these formal models of interactive systems in more details.

(Refer Slide Time 02:08)

There are many ways in which we can think of a system. One very intuitive way to view

user centric system is to think of it as a dialog between a computer and a human user. So,

essentially, the system communicates with the user through the interface. So, the

interface is the medium of communication for the system. Based on the interface state

whatever is the state of the interface the user perform some interactions essentially,

touch, click or such interactions. And as a result the state of the interface changes and

this process continues or the dialog continues.

So, there is an interface through which the system communicates something to the user

perceives that by perceiving the state of the interface. Based on that perception, the user

perform some action on the interface which leads to change in the state of the interface

and that is the dialog and it continues till the user achieves the desired objective or

achieves the goal.

(Refer Slide Time 03:39)

Then, we can see that in this view of the system as a dialog there are two components;

the interface and the interaction. By interface we mean the state of the interface and the

second component is the interaction.

(Refer Slide Time 03:59)

So, in a nutshell, what happens is that user perceives the state of the interface as the

system state note the emphasis on the term the. So, whatever is the state of the interface

is perceived by the user as the state of the whole system. So, user is not bothered about

the internal working, how the memory content looks, how the processor is working, how

the battery is consumed or what is the bus utilization bandwidth utilization all these

things. The user is only concerned about what he or she can perceive on the interface and

that is the state of the system for the user and user interaction leads to state transition.

So, essentially by interacting with the interface, the user can take the system to a new

state. These are the basic components of a view of the system where we think of the

system as a dialog between the user and the computer.

(Refer Slide Time 05:18)

So, if that is the case then we can consider modeling of the system or modeling of the

interactive system as dialog modeling as well. So, when we say that we want to model

our interactive system in terms of system states and transition between states, essentially

what we are trying to model? We are trying to model the dialog between the system and

the user.

So, system modeling is equivalent to modeling the dialog as well. In other words, we

considered the dialog to be the system. So, earlier we considered the system to be a

composition of system state and transition. Now, we are saying that this is nothing, but

the dialog between the user and the computer and our objective is to formally model this

dialogue.

Now, earlier in the previous lecture, we have seen that state transition networks can be

used to model the system. We can use states and transitions between them use the state

transition network notation to model the system of states and transitions; however, all

our examples were for simple systems. So, if the system becomes too complex then the

basic state transition networks that we have seen in the examples in the previous lecture

will not be sufficient to model such complex systems and we required some better

modeling techniques.

(Refer Slide Time 07:06)

In this lecture we are going to discuss about few of some advanced modeling languages

for modeling complex interactive systems. Let us reconsider the example system that we

have introduced in our last lecture the character display system.

(Refer Slide Time 07:20)

Recollect that, it is only a simple system it has only a very simple interface which is

capable of showing only one letter of the English alphabet, one letter in capital. And we

can change the front size of this letter and we can change the color of this letter.

So, there are 26 capital letters in the English alphabet, we can change its font size by

making it one of the 8 possible values that we have defined as mentioned in the earlier

lecture. And also it can change its color between red and black. So, total we have

identified 416 states for this simple interface system and between these states there will

be transitions. So, the total number of transitions will be large.

(Refer Slide Time 08:05)

Now, we want to basically represent this system in the form of STNs; so, for that we

need to probably draw it on paper. But as we have already mentioned drawing such a

large number of states and transitions on a paper for visual inspection and analysis is too

complex a task.

(Refer Slide Time 08:50)

You may argue that it is not necessary to always draw STNs instead what we can do is

that, we can use some programming language construct to specify the STNs and then

perform some analysis on this specification. But that itself is not easy unless we are able

to visualize the whole system, we are likely to make some mistakes during specification

as well.

(Refer Slide Time 09:23)

For example, we may miss some states or some connecting arcs between states during

specification because we are unable to visualize it. Now, what is the consequence of such

mistakes? There can be many consequences actually by making those mistakes we can

violate various desirable system properties which otherwise would have been there.

(Refer Slide Time 09:39)

For example, by making the mistake we can actually develop a STN which may lack

completeness. Or sometimes we may end up with a model that has reachability issue

other properties may also get violated then that defeats the whole purpose. So, we have

actually designed something very nice which supports certain properties which ensures

usability indirectly.

However, during specification for later analysis or during coding of that model for

software development, which involves specification; we may end up specifying the

model wrongly which may lead to violation of certain properties. So, our design is ok,

but our specification is the problem.

(Refer Slide Time 10:54)

Now, why this problem happened? Primarily, because we are unable to visualize large

and complex systems. And how we can resolve this issue?

(Refer Slide Time 11:06)

We can resolve it by using a proper specification language to tackle complex system

visualizations. In fact, most of the practical systems are large and complex they are not

simple systems that we have encountered in our examples and unless we are able to

properly visualize those systems, it is difficult to encode or specify those systems in

computer.

So what do we need is a proper specification language. And in this lecture we are going

to learn about a couple of such languages. So, we will start with one language which is

called hierarchical STN or hierarchical state transition networks.

(Refer Slide Time 11:50)

The basic idea is that we can think of the whole system as a hierarchy of subsystems.

And the overall model is a hierarchy of sub dialog models with higher level connections

in between. So, essentially we are thinking of the whole system not as a single system,

but as a hierarchy of less complex subsystems and we provide higher level connections

to those subsystems to model the whole system.

(Refer Slide Time 12:27)

Now, if we want to use this hierarchical STN to model our example system that is the

character display system, it will look something like this figure where we have sub

dialog models. Say one sub dialog model maybe for letters, one sub dialog model maybe

for font size and one sub dialog model for a font color.

Now, between these models we have connections. So, let us have a start state. So, from

start state if we press the up or down arrow key then we go to the sub dialog for font size,

if we press the left or right arrow key, then we go to sub dialog for letter. From sub

dialog for letter if we press up down arrow key then we can come to the sub dialog for

font size and at this sub dialogues or at this state of the system.

If we press left right arrow key then we can go to the letter sub dialog again. Similarly, if

we press space key when we are in the sub dialog for font size state. Then we can come

to sub dialog for font color and by pressing up and down arrow key we can go to sub

dialog for font size again. We can come to sub dialog for font color from sub dialog for

letter by pressing the space key and by pressing the left right arrow key we can go to the

letter sub dialog from the color sub dialog. And from the start state if we press the space

key we can come to the font color sub dialogue.

Now, this is a much nicer way to represent the whole system. As you can see we

managed to depict the entire system within a small area by assuming that there are sub

dialogues and there is higher level connection between those dialogues. So, each sub

dialog can be a state transition network in itself or can be another hierarchy upstate

transition networks.

(Refer Slide Time 14:46)

For example, the sub dialog for font color can be represented as a state transition

network as shown in this figure where there are two states color equal to red and color

equal to black. And with interaction by pressing the space key we can move between

these two states.

(Refer Slide Time 15:21)

Similarly, we can draw sub dialog models for the letter and the font size as well.

(Refer Slide Time 15:28)

Now, if we are trying to do that, it may be noted that the for letter sub dialog there are 26

states each state corresponds to one of the alphabetic letter. And in between them, there

will be 52 transitions or arcs, for font size model since there are 8 font sizes to choose

from we can have eight states and sixteen arcs. These are still manageable compared to

416 states and arcs in between.

(Refer Slide Time 16:07)

So, what we have essentially done? We have divided the problem into sub problems. So,

our entire problem was to draw the STN for the entire system, Now, we have divided it

into sub problems that is to draw STNs for specific sub dialogues. And then we have

connected the sub dialogues with fewer arcs those are higher level arcs or transitions.

(Refer Slide Time 16:36)

Now, when you say that we reduced the complexity of the problem by dividing it into

sub problems, what it means? It means that, we have defined states that are having

reduced number of variables hence they have become manageable. For example, the sub

dialog for font color has only one state variable which is color.

Unlike in the previous case where we were trying to model the whole system with the

single STN where we have defined three state variables for each state which led to 416

combinations. Now, if we have only one variable which can take only two values then

there are only two states. So, we will be able to manage this sub dialog model in a much

less space.

(Refer Slide Time 17:31)

Now, in this example we have solved our problem with only two levels in the hierarchy;

however, in practice the systems are much more complex than the example system. As I

am repeatedly saying and there are two levels may not be sufficient and you probably

have to go for many more levels and many more sub dialogues.

(Refer Slide Time 17:57)

Can we do any better? So, whatever we have seen with the hierarchical STN, it is

sufficient for giving us a nice and clean model of our example system, but is there any

issue with this model?

(Refer Slide Time 18:14)

Actually there are few issues, hierarchical STN all though formal, but still there is some

ambiguity. For example, when we say that we have sub dialogues and there are higher

level connections each sub dialog is essentially STNs in itself.

Now, when we enter a state transition network we are supposed to enter at a specific

state in the hierarchical STN notation, we have no way to actually inform which state

should be entered first. When the whole sub dialog is entered for the first time or at any

instant of interaction when a sub dialog is entered which state to be entered which state

of that particular sub dialog to be entered? The hierarchical STN language does not

support that level of specification.

(Refer Slide Time 19:16)

The language also is not good at modeling concurrent behavior. For example, if we want

to change the font size and color together it is not clear how to represent that behavior

with the notion of a hierarchical STN. There are a few more issues; these two are among

the major issues namely ambiguity and lack of support for concurrence. Now, we can go

for better formalism, than the hierarchical state transition network which is called state

chart. So, we will have a brief look at the idea of state chart and how it can be used to

model dialogues for interactive systems.

(Refer Slide Time 20:03)

So, what is a state chart? It is kind of visual formalism to represent complex systems.

And it extends conventional state transition diagrams or STNs with essentially three

elements dealing with hierarchy, concurrency and communication. However, we will not

cover all the things in the state chart, we will only cover how it deals with hierarchy and

concurrency mostly. So, state charts are nothing, but state transition networks in a

modified form.

(Refer Slide Time 20:42)

And they are capable of representing hierarchy and concurrency together that is the main

advantage of having a state chart notation over hierarchical state transition networks.

(Refer Slide Time 20:57)

Now, state chart notation or state chart formalism actually contains many useful

elements, but we will focus on few of them which are very fundamental; namely super

state, basic state, default state mechanism, history mechanism and super state. So, let us

see one by one what these concepts mean. So, state chart as we mentioned is extension of

state transition networks.

(Refer Slide Time 21:35)

So, it consists of states and transitions. What these states represent? There are two types

of states there are some states that are composed of other states and these are called super

states. There are some states which are not composed of any other state these are called

basic states. For each basic state there is a super state and this super state is also known

as ancestor state.

So, to recap there are two types of states some are composed of other states those are

called the super states, some are not composed of other states those are called basic states

and for each basic state there is always a super state this super state is sometimes called

the ancestors state of that particular basic state.

(Refer Slide Time 22:31)

The idea is illustrated in this diagram, here as you can see this is the typical convention

used to represent super state basic state and transitions. So, B 1 and B 2 are the basic

states and we can define transitions between them as shown here T 1 and T 2 the state

that contains these two states B 1 and B 2 is the super state which we can label with the

name here the label S is given to this super state. Now, this super state S is the ancestors

state for both B 1 and B 2. So, S is the super state which is also ancestor state for B 1 and

B 2 B 1 and B 2 are the basic states.

(Refer Slide Time 23:34)

Now, state transition networks are meant for transitioning from one state to another

which is called state traversal. During the state traversal in a state chart formalism, the

current state being accessed either a basic state or a super state is called active state.

Now, if a super state contains only one active basic state at a time whenever it is active it

is called OR super state.

(Refer Slide Time 24:13)

To indicate the active basic state whenever a super state is entered, there is a notation

which is called default state mechanism which is used to indicate the behavior. Now, this

notation comprises of a field circle with an arrow pointing to the basic state that should

be active let us try to understand it with an illustration.

(Refer Slide Time 24:49)

So, in this figure the concepts are highlighted. Now, this field circle with arrow which is

shown within this red dotted circle is the default state mechanism that we have just

mentioned. So, whenever the superstate S is active, in the overall state chart then the

default state mechanism indicates that B 2 should become active.

(Refer Slide Time 25:27)

.

One important aspect of a state chart is that the way it represents entry and exit from

super state. So, default mechanism we have already talked about. There is another

convention use that is we typically draw an arc from the boundary of the super state to

indicate exit rather than drawing it from one of the basic states. So, when we want to

indicate exit from the super state we do not directly draw an arrow or an arc from a

particular basic state to outside of the super state. Instead from the boundary of the super

state we rather arc.

(Refer Slide Time 26:10)

The idea is illustrated in this figures. So, in the left side what we have is what exactly we

want that is we have a super state S 2 basic states. Now, from B 2 we want to go to B 3

and from B 3 we want to go to B 1. So, how to denote this using state chart notation that

is shown in the right hand figure.

Here as you can see the arcs are not directly drawn from B 3 to B 1 and B 2 to B 3 unlike

in the left figure. Here from B 3 the arcs are extended up to the boundary of the super

state the arcs T 3 and T 4 inside the super state we have mentioned this default

mechanism that is whenever the super state is entered B 1 should get active. So, it is

essentially same as telling that from B 3 if we entered the super state we will go to B 1.

So, in this way we can indicate how to specify the entry and exit to a super state.

(Refer Slide Time 27:31)

There is another useful notation that is called history mechanism, which essentially

indicates a memory of the super state that is the basic state or the active basic state before

the super state is exited. So, last time what was the active basic state before we exited the

super state. Now, why these memory is important? It ensures that next time the super

state is entered the same basic state is activated again. So, we do not need to start from

the beginning or the default state.

(Refer Slide Time 28:11)

Default state mechanism and the history mechanism can be used in tandem. So, we can

use them together to indicate this behavior at the start of the state traversal and in the

middle of state traversal. So, at the beginning we can apply default state mechanism and

at any instant during the state traversal we can rely on the history mechanism.

(Refer Slide Time 28:46)

The idea is illustrated in this figure, where we are combining the default mechanism with

the history mechanism. So, H within this circle indicates history and the default

mechanism we have already seen. So, in this super state both the mechanisms are

specified; that means, when the super state S is entered for the first time it starts with the

default mechanism. So, it starts with B 1; if it exits then it remembers from where it

exited and it starts from that state next time it is entered.

(Refer Slide Time 29:30)

So, with this notation let us now try to see how we can build a state chart for our

example system. So, remember that in our example system, we have 416 states. Now,

earlier we have seen how to use the hierarchical STN to divide the whole system into

subsystems and come up with a hierarchical specification of the whole system. Now, we

are going to use the state chart notation to represent the same system.

(Refer Slide Time 30:03)

This figure shows a state chart representation of the character display system which we

have described earlier. Here as you can see there are three super states color font size and

character. So, color super state or a font size super state or character super state contains

many basic states. Here we have mentioned that all the super states combined both the

default state mechanism and the history mechanism. So, these two mechanisms are

present in all the super states.

Now, one thing maybe noted here that in font size super state or character super state we

have used some state transition networks with dotted lines; this is not part of the

convention. So, typically this is not used in state chart notation, here we have used it to

simplify the depiction of a large chain of transitions for font size as well as the character.

Since we have used the dotted line it also indirectly indicates that the things are still not

manageable we can still go for improvement. So, possibly we may go for some further

hierarchy in this case.

So, how the hierarchy is taken care of by defining super states and defining connections

between the super states and within each super state like before we have the sub

dialogues modeled using STNs; with the added advantage that this time we have

specified the history mechanism and default state mechanisms. So, now, we know if one

super state is entered say for example, character then where it should start? So, as per the

default mechanism so the state A should start whenever the character super state is

entered.

(Refer Slide Time 32:23)

As I said since we have used dotted lines; that means, we are still unable to show the

entire system within a single page. So, there is possibly scope for more simplification by

adding additional levels of hierarchy or additional levels of super states that is one

advantage of using state chart that is it allows us to represent hierarchy. But at the same

time it allows us to specify the entry exit points in the hierarchy which is not possible

with hierarchical STNs there is another advantage.

(Refer Slide Time 33:09)

Many interactive systems are actually concurrent in nature, the way they behave can be

termed as concurrent behavior.

(Refer Slide Time 33:17)

What do you mean by that? In the example system, we assume that the states are

changed one after another which was ensured by sequential nature of the interaction. So,

we performed the interaction one after another to change the display state.

(Refer Slide Time 33:38)

Let us now, consider it different design let us modify the design slightly, suppose we are

dispensing with the left right arrow key. So, what we are left with is only the up down

arrow key. Now, this arrow key we are using to change both font size and character how

that is possible? Let us see.

(Refer Slide Time 34:05)

If we press the up key then what happens is that, the font size change to the next higher

level that is 14 becomes 16 and at the same time simultaneously the letter also changes to

the next letter in the alphabet that is A becomes B and the down key does exactly the

opposite of this.

(Refer Slide Time 34:30)

So we can of course, add certain constraints like the up key or the down key does not

work at the boundaries. So, when we have reached the maximum font size or the last

letter of the alphabet the up key will not work similarly the down key should not work

when we have reached the minimum font size or the first letter of the alphabet.

(Refer Slide Time 34:53)

So, what is the difference between this design and the previous design? Remember that

in the previous design we can actually change font size and letter one after another by

using different keys, but here that is not the case here both are changing together. Now,

the earlier hierarchical STN model of our system or the state transition networks or the

state chart model none of these models of our system actually capture this concurrent

behavior. And we need to modify the language actually to specify this concurrent

behavior.

(Refer Slide Time 25:30)

Whatever we have learned so, far about state chart is not sufficient to help us resolve this

issue. However, it may be noted that state chart notation supports concurrency and that is

achieved with the idea of the AND super states. And we need this notation to specify

concurrency in our proposed model of the system.

(Refer Slide Time 35:52)

So, first let us try to understand what is this AND super state. The AND relationship

between super states indicates that, whenever the super state is entered, all the sub states

are activated together according to the corresponding default state mechanism and the

states remain active as long as the super state is active.

(Refer Slide Time 36:25)

The figure illustrates the idea. Now, S is a super state it has two sub states T 1 and T 3

each of these can have a sub dialog models as shown here. Now, whenever S is entered

both T 1 and T 3 are active simultaneously. Now, what I mean by the term active? That

means, whenever they are entered the basic state that is indicated by the default

mechanism becomes active together. So, whenever S is entered B 1 and B 3 get active

together because the default mechanism indicates.

So, in the case of T 1 the default mechanism says B 1 should be the first state or default

state in case of T 3 its states that B 3 should be the default state. So whenever S is

entered, both these default states get active together. And the dotted line that separates

the two sub states T 1 and T 3 indicates and relationship. So, with this notation we can

represent concurrent behavior; here T 1 and T 3 are concurrently active. Now, with this

notion of concurrency, we can try to represent the character display system in terms of

state chart notation it will look something like this.

(Refer Slide Time 37:58)

Here now, we have these two sub states the sub dialog for font size and sub dialog for

character they are now, connected by the AND super state notation. So, this font

size and character is the super state and it is an AND super state where the sub states are

font size and character they are active simultaneously. Then the other super state is color

and these AND super state and the colors super state connected with left right arrow key

press and space key.

So, it is as you can see it is in a much simpler form then the earlier one where

concurrency was not taken into consideration. And as before the sub dialogues can be

represented with STNs; however, there is some change. Now, actually to traverse

between the sub states in the sub dialogues, we would no longer need the up down arrow

key or would no longer need the one set of arrow keys. So, that should be taken into

account while modeling the sub dialog for these sub states font size and character. So,

that is all about the basic idea how we can use the formal notation to model an interactive

system.

So, here we have shown how to use state charts hierarchical STN and state transition

networks to model interactive systems. So, first we started with state transition networks

and we have found that it is not suitable to model complex large practical systems. So,

then we learned about hierarchical state transition networks, where we divide the

problem into sub problems and create a hierarchy of sub problems to solve the overall

problem. Now, there is some elements of ambiguity in this hierarchical state chart and

also it does not support concurrency in order to handle those things.

While retaining the benefit of hierarchical representation, we learned about state chart

notations. And we have seen how we can use it to represent complex systems both

supporting sequential behavior as well as concurrent behavior. The question is so, that is

how we actually represent it. Now, what is next is it only to draw it on a paper that we

learn these models these formalisms that is not necessarily that is actually not the

purpose.

So, when we say we want to formally represent a system definitely our objective is to be

able to encode it in some language. So, that it can be processed by computer in other

words we can create a software out of it.

(Refer Slide Time 41:40)

So, there are tools to do that. In fact, state chart notation is a very common formalism

used in software property verification. And accordingly there are many tools available

for model specification or model implementation; that means, translating the graphical

representation to a code form program form. Then there are tools available to specify

system properties.

So, state chart does not specify any property state chart is a representation of the system

and we can actually verify this model the state chart model to check for presence or

absence of system properties. So, what we need is to specify those properties as well and

together the specification of the model and the properties can be used for verification.

So, there are tools available do all these things to specify the state chart model to specify

properties and to verify those properties. However, we will not go into the details of

those are not in the scope of this lecture, but if you are interested you can check the

reference that will be mentioned at the end of this lecture.

(Refer Slide Time 43:08)

So, whatever we have discussed today are taken from this book. So, you can refer to

chapter 8, section 8.4; along with that you can refer to other sections if you are interested

to learn about. How to use the specification, how to use the models, what are the tools

available you can get some introductory idea on these basic concepts. That is all for

today.

Thank you and goodbye.

	Formal modeling of user-computer dialogue

