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Welcome to the fourth lecture  of  the  NPTEL MOOC on Parallel  Algorithms.  In the

previous lectures we have seen several models of parallel computation in particular we

have seen the parallel random access machine and several and several varieties of it. In

particular we have seen the Exclusive Read Exclusive Write P RAM, the Concurrent

Read Concurrent Write P RAM, the Concurrent Write and Exclusive Write P RAM. And

we have also seen the several varieties of the CRCW P RAM namely priority, arbitrary,

common,  coalition  and tolerant  and we have also seen how some of  these could be

simulated on some of the others.

Today we shall see an interesting property of some of these P RAMs the property is

called Self Simulation.

(Refer Slide Time: 01:20)

A P RAM model is said to be self simulating if a larger P RAM can be simulated on a

smaller P RAM of the same kind for a proportionate slowdown. So, what I mean is this

let us say we have a P RAM of capital N processors and we have another P RAM of



small n processors and let us see we want to simulate the one step of the larger P RAM

on the smaller P RAM.

If the simulation can be affected in order of capital N by small n steps, then we say the P

RAM is self simulate able let us show that several of the models familiar to us or self

simulatable. First let us consider the EREW P RAM on the EREW P RAM concurrent

read  or  concurrent  write  are  not  allowed  that  is  in  any  particular  clock  cycle  the

processors would be reading some memory locations  and writing into some memory

locations, no 2 processors should be reading from the same memory location and no 2

processors should be writing into the same memory location.

Let us say we have 5 processors, let us say these processes want to read from locations

M 1, M 2, M 3, M 4 and M 5 respectively and let us say they want to write into locations

M 1 prime, M 2 prime, M 3 prime etcetera. So, the processors in one clock cycle would

perform all these reads and all these writes a clock cycle as we have seen in the previous

classes is divided into read cycle and execute cycle and the write cycle.

So, in the read cycle all the reads will happen simultaneously, then the processors will

execute and then in the write cycle all the writes will happen simultaneously since the

reads and writes are all exclusive there will be no conflict. So, this is the step that we

want to simulate. So, we have a 5 processor P RAM a step of which is shown here, this

we want to simulate on a 2 processor P RAM let us say we have 2 processes Q 1 and Q 2

on a 2 processor P RAM. On a 2 processor P RAM we want to simulate this one step.

So, the simulation proceeds in this fashion, in the first step the processes Q 1 and Q 2

pretend to be processes P 1 and P 2 respectively. So, processes P 1 and P 2 read from

locations M 1 and M 2 and write into locations M 1 prime and M 2 prime. So, Q 1 and Q

2 pretending to be P 1 and P 2 will read from locations M 1 and M 2 and write into

locations M 1 prime and M 2 prime.

Since  these  reads  and  writes  are  exclusive  from  the  reads  and  writes  of  the  other

processors  there  will  be  no  consistency  issues  when  these  2  steps  are  executed  in

isolation. So, after Q 1 and Q 2 have finished pretending to be P 1 and P 2 and have

finished the finished executing this particular step. In the second step of the simulation

the same pair  of processors Q 1 and Q 2 will  pretend to be processes P 3 and P 4,

pretending to be P 3 and P 4 they will read from locations M 3 and M 4 and write into



locations M 3 prime and M 4 prime. That is in the read cycle of the simulations step, they

will read from locations M 3 and M 4 and in the write cycle of the simulation step they

will write in locations M 3 prime and M 4 prime.

Then finally, in the third step of the simulation process a Q 1 alone will participate this

will pretend to be process of P 5. Process a Q 1 pretending to be process of P 5 will read

from location M 5 and write into location M 5 prime with those all the steps of the 5

process a machine are simulated all the reads and writes have been simulated and the

time taken is 3 steps and 3 happens to be the ceiling of 5 by 2. 

So, this is the principle of the simulation, when we have capital N processors and when

we have small n processors with which we have to simulate these processes what we do

is this. The capital N processes will be divided into several groups each group is of size

small n and then each group will be brought alive in turn starting from the left end in this

case.

So, first P 1 and P 2 are brought alive, then P 3 and P 4 are brought alive and finally, P 5

was brought alive in each case we will be using only the actual processes Q 1 and Q 2.

So, the simulation runs in 3 steps. So, we can easily generalize this to a simulation of a

capital N sized P RAM on a small n sized P RAM and the simulation will run in order of

capital N by n steps. So, we say that EREW P RAM is a self simulatable model exactly

the  same  principle  will  work  for  the  CREW  P  RAM  as  well.  Therefore  both  the

concurrent read exclusive write and the exclusive read exclusive write P RAMs are self

simulatable.

Now we come to the CRCW P RAM models first let us consider the strongest of them

namely priority.
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First of all let us set up an example let us say we have 10 processors, P 1 wants to write

in location 7, P 2 wants to write in location 4, P 3 wants to write in location 13, P 4 wants

to write in location 13, P 5 wants to write in location 4, P 6 wants to write in location 20,

P 7 in 4, P 8 and 13, P 9 in 4, P 10 in 7, let us say and let us say they want to write values

V 1, V 2, V 3 etcetera.

So, for example, process of P 5 wants to write in location 4 and the value that it wants to

write is V 5. So, as you can see there are conflicts  in this case, we have 4 locations

namely 4 7 13 and 20 and the processes that want to write in location 4 are  2  5  7  and  9

processes 1 and 10 to write in location 7, processes 3 4 and 8 want to write in location

13, processor 6 wants to write in location 20.

So, let us say this is one step of a 10 processor P RAM and we want to simulate this let

us say on a 4 processor P RAM, first let us consider the strongest of the CRCW P RAM

models which is priority. So, let us say we want to simulate this step of a 10 processor

priority  CRCW  P  RAM,  on  a  4  processor  CRC  priority  CRCW  P  RAM.  So,  the

simulation proceeds as follows, in the first step processors Q 1, Q 2, Q 3 and Q 4 pretend

to be P 7, P 8, P 9 and P 10.

So, as you can see they have divided the virtual processors P 1 through P 10 into groups

of  size 4 each and we are beginning from the right  end that  is  we are bringing the

rightmost  group alive  first  you will  see  why this  is.  So,  now, Q 1,  Q 2,  Q 3,  Q 4



pretending to be P 7, P 8, P 9 and P 10 will write to locations 4, 13, 4 and 7 respectively.

So, you can see that processors P 7 and P P 9 conflict over location 4 since the model is

priority the least index processor will succeed therefore; P 7 will succeed in writing in

location 4.

There is  no conflict  that  the other  locations  therefore,  P 8 and P 10 also succeed in

writing. So, the processes that will succeed in this step of the simulation are P 7, P 8 and

P 10. The content of the memory location now will be location 4, 7 and 13 have changed

and they now contained V 7, V 10 and V 8 respectively location 20 has not changed let

us say it is content remain the same old value which we denote as O 20.

So, this is the content of the memory after the first step of the simulation, now in the

second step of the simulation as you would expect we would bring the next group alive.

So, here Q 1, Q 2, Q 3, Q 4 pretend to be P 3 through P 6 respectively and they will write

to locations 13, 13, 4 and 20 respectively. So, as you can see again there is a conflict at

location 13 processes P 3 and P 4 will attempt to write in location 13, there is no conflict

at locations 4 and 20.

So, P 3 and P 4 conflict at location 13 and P 3 will win because 3 is smaller than 4

therefore, at location 13 the value changes to V 3, at location 4 the value changes to V 5,

at location 20 the value changes to V 6. So, locations 4, 7, 13, 20 now contain V 5, V 10,

V 3 and V 6.
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Now, we come to the third step of the simulation,  in the third step there are only 2

processors left. So, these can be simulated using 2 of the actual processors. So, Q 1 and

Q 2 will simulate processors P 1 and P 2 they write to locations 7 and 4 respectively and

both of them will succeed because there is no conflict.

So, the contents of the memory will now be locations 4 and 7 were overheard and in this

step therefore, they finally, contain V 2, V 1, V 3 and V 6. So, this is the end of the

simulation. So, at the end of the simulation the locations would contain V 2, V 1, V 3 and

V 6 exactly how they should be if the 10 processors step was executed on a 10 processor

priority CRCW P RAM the result is identical.

If these were executed on a 10 processor P RAM the succeeding processes would be 2, 1,

3 and 6 they would succeed in getting values V 2, V 1, V 3 and V 6 into locations 4, 7, 13

and 20 respectively and that indeed is the net result of the simulation. Therefore, the

simulation is a success the simulation has taken 3 steps which as the ceiling of 10 by 4.

So, extending this technique of simulation we can now simulate an n processor P RAM

on an n small n processor P RAM in order of capital N by small n time which proves that

the priorities CRCW P RAM model is also self simulatable.

Now, we come to the arbitrary model in the arbitrary model when a set of processes

attempt to write in the same memory location that is when they conflict on a particular

memory location. Then the algorithm designer can be sure that any one of them will

decide, but the designer cannot be sure which one of them will succeed. So, how should

the  simulation  be  different  from priority?  In  fact,  we  find  that  the  same simulation

technique will work on arbitrary as well.

If we run the same simulation on the arbitrary model that is if we have a 4 processor the

arbitrary CRCW P RAM and the same simulation has run on it then the final result will

be almost identical. The only thing is that, in the first step whenever there is a conflict in

the first step there is a conflict between processes P 7 and P 9 and on the priority model P

7 wins, but in the case of the arbitrary model instead of P 7 P 9 might win too. So, all we

can say is that one of the processes P 7 and P 9 might win therefore, the content here

could well have been V 9, but then we find that this value in any case will be overwritten

by V 5 in the next step.



So, irrespective of whether it was V 7 or V 9 the value will be overwritten by V 5 in the

second step of the simulation, but in the second step of the simulation location 13 has a

conflict. So, P 3 and P 4 are both (Refer Time: 17:35) to write in to location 13 and one

of them will succeed, arbitrary can guarantee only that one of them will succeed, but then

all we know here is that the value which gets in location 13 is either V 3 or V 4.

So, the contents of the locations would be like this now at the end of the second step of

the simulation we will have V 5 and 4, V 10 in 7, V 3 or V 4 in 13 and V 6 in 20 and

finally, when we override the values in locations 4 and 7 we will have the contents of the

locations like this, there is an ambiguity about the contents of the location 13 it could be

either V 3 or V 4, but this is perfectly fine because this is all that the arbitrary model

assumes  that  is  one  of  the  conflicting  set  of  processors  should  win  and  that  indeed

happens here.

So, we find that the simulation works fine on the arbitrary model as well. So, arbitrary

model is self simulatable as well. Now we come to the common model on the common

model what we know is that when a set of processes conflict they will all be writing

exactly the same value. For example, in this case processors 2, 5, 7 and 9 conflict over

location 4 therefore, that is if the given 10 process of step were up step of a common

CRCW P RAM, then we assure that V 2 equals V 5 equals V 7 equals V 9 otherwise this

would be an illegal step.

Since  all  these  values  are  the  same,  it  does  not  matter  which  processor  succeeds,

therefore, the same simulation will work for the common model as well whereas, in the

first step of the simulation we attempt to simulate P 7, P 8, P 9 and P 10 and then P 3

through P 6 and then P 1 and P 2 exactly the same schedule of simulation will work for

common as well.

Now, you might notice that for the case of priority it is crucial that we start from the

rightmost group that is the group with the largest index. In this case P 7, P 8, P 9 and P 10

that is because on priority the processor with the least index is supposed to succeed.

Therefore, we want the processor that is writing into a location to overwrite all the values

written by processors of larger index for example, P 1 and P 10 here are attempting to

write in location 7, in the first step of the simulation 10 gets a go. So, 10 will get to write

value V 10 in location 7 and in step 3 when P 1 comes alive P 1 will override this value



with V 1. So, the wide final value that goes into the memory location is V 1 and not V 10

had we simulated the other way around that is had we started with the leftmost group

then V 10 would have been overwritten on V 1 and the final value would have been V 10

that would not do.

Therefore for the priority model it is crucial that we start with the rightmost group, but

for the arbitrary and common simulations, that is not crucial we might as well start with

the leftmost end. So, now, we have shown that all these 3 models are self simulating.

(Refer Slide Time: 21:17)

Now, we come to the collision model on this model the proof is a little harder, this is

because on the collision model when a set of processors conflict over a memory location,

a collision symbol is supposed to appear in that location. So, as in our previous examples

let us assume that dollar is the collision symbol which is a special integer.

So, here again we use the same example, here what we do is this, first we copy the old

values into an auxiliary array what I mean is this processor one wants to write in location

7 suppose location 7 contains the an old value O 7. This old value is copied into one

location processor O 2 wants to write in location 4, the old value of location 4 is copied

into the adjacent location processor 3 wants to write in location 13 it is old value is

copied in the third location,  then in the fourth location we have O 13 again because

processor of 4 wants to write in location 13 and so on.



So, in the first step of the simulation what we do is to copy these old values into an

auxiliary array in the shared memory now this auxiliary array has a size of n because

there are n virtual processors there is one old value for each of the virtual processors this

auxiliary array has a size of n. So, what we now need is this in this step every processor

should read a value and write it into a separate memory location. So, the writes are all

exclusive the reads may not be exclusive because processor P 3 and P 4 are reading from

the same location 13.

So, this is like a step of the CREW P RAM we have already seen that CREW P RAM is

self simulating therefore, N steps of the CREW P RAM can be simulated on a small n

sized P RAM in order of capital N by small n steps. So, this is an array of size 10 this can

be simulated on a 4 processor machine in 3 steps. So, the first step of the simulation

algorithm in fact, takes 3 clock cycles it is like the simulation of a CREW P RAM step.

In the second step we let processors Q 1, Q 2, Q 3, Q 4 pretend to be P 7, P 8, P 9 and P

10 and write into locations 4, 13, 4 and 7.

So, the memory contents would now be like this location 4 has a conflict therefore, the

collision symbol will appear in location 4, location 7 has no conflict therefore, V 10 will

appear there, location 13 has no conflict therefore, V 8 will appear there, 20 has not been

returned to therefore, 20 will contain the previous value with 20, this is how the location

values would now be.
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Then in the second step of the simulation we would have Q 1 through Q 4 pretending to

be P 3 and P 6, P 3 through P 6 and writing into locations 13, 13, 4 and 20.

Now, here 13 has a conflict,  but when location 4 already contains a collision symbol

processor P 5 when it attempts to write in location P 4 finds that it already contains the

collision symbol therefore, it will back off it finds that it already contains the collision

symbol therefore, it backs off. Therefore, at the end of the step the memory will contain

collisions symbol in locations 4 and 13, this is what happens in the third step of the

simulation.

Then in the fourth step of the simulation processes Q 1 and Q 2 try to locations P 1

pretend to be P 1 and P 2 and write in locations 7 and 4, processor P 2 attempting to write

in location 4 finds that it already contains a collision symbol therefore, as processor P 5

did in step 3 it would back off and the collision symbol will be left behind in location 4,

what about processor 2, processor 1.

Processor 1 that attempts to write in location 7 finds that the value there is P 10 and it

realizes that this value V 10 is different from the old value, the old value had been copied

into the first memory location of the auxiliary array, the first location corresponds to the

index of the first processor. So, the first processor will look into the first location of the

auxiliary array and there it will get the old value of location 7, it finds that the old value

has changed.

Why did the old value change that is because in some of the earlier step of the steps of

the simulation some processor wrote in location 7. What it means is that, if the given step

would have been executed on a 10 processor P RAM then there would have been a

conflict at location 7 and the collision symbol would have appeared in location 7. 

Therefore, the first processor now realizes that there is in fact, a conflict at location 7 and

therefore, it should write the collision symbol there therefore, what the first processor

does is to write the collision symbol in 7 not the value V 1. Therefore, at the end of the

third step we find that the concerned memory locations contain the collision symbol in

locations 4, 7 and 13 and location 20 will contain V 6, this is exactly the behavior of the

collision model.



So, we have managed to self simulate  collision as well the self simulation has taken

order of N by small n steps for the copying of the old values into the auxiliary array, after

that we have again order of N by small n steps of simulations therefore, the total cost of

the simulation is order of N by n again. Therefore, to summarize we can say a P RAM

model is self simulating if for every N greater than or equal to small n a P RAM of that

model of size small n can simulate a single step of another P RAM of the same model of

size capital N in order of capital N by small n time.

We have seen that all CRCW P RAMs we know except for tolerant are self simulating

tolerant is not known to be self simulating because tolerant is not known to have this nice

property in the rest of this course we will be seeing very little of tolerant, consider an

algorithm that runs in T steps using P processors.

(Refer Slide Time: 29:50)

So,  here  we  have  p  processors  and  the  p  processors  are  all  active  for  t  steps  each

processor executes t instructions therefore, the total number of instructions executed by

all the processors together is p into t this is what we call the cost of the algorithm. It

could  be  that  during  some  part  of  the  algorithm  some  processors  are  idle,  but

nevertheless  those  processors  are  active  and  are  dedicated  for  the  execution  of  this

algorithm.

Therefore we have to count all the instructions the no operation instructions executed by

these processors also towards the cost of the algorithm. So, if you keep p processors alive



for a time duration of t for the execution of the algorithm. The total cost of the execution

is p times t this is what we call the cost of an algorithm, if this algorithm is simulated on

a one processor P RAM which is identical to a random access machine or conventional

computer, if we simulate this on a random access machine then that one machine can

simulate the first step of every processor in the first phase of the simulation.

So, first all the first steps of the processes are executed one by one. So, the one actual

processor will pretend to be each of the virtual processors one after another and then

execute all the first steps. Once all the first steps are executed the processor can in turn

execute the second steps. 

So, proceeding like this the first step of the algorithm can be simulated in p steps the

second step can be simulated in an additional p steps and so on. Therefore, to simulate

the p steps of the algorithm it  would take order of pt  time on a  sequential  machine

therefore, the cost of a parallel algorithm corresponds to the time taken by the sequential

simulation of that algorithm, cost is a measure that we will be considering very often.

(Refer Slide Time: 32:18)

Let us say we have an algorithm with a (Refer Time: 32: 19) log n steps using n by log n

processors, then the cost of the algorithm is order of n the product of the time and the

number of processes. If an algorithm runs in log of log n time using n divided by log of

log n processors the cost of this algorithm is order n 2.



If an algorithm runs in order of log square and time using n by log in processors the pt

value in this case is order of n log n there is an algorithm that runs in log square of n time

using n by log n processors can be simulated on a single processor machine in order of n

log n time. So, the cost of the sequential simulation is order of n log n that is also the cost

of the algorithm.

(Refer Slide Time: 33:46)

So, the notion of cost leads us to the notion of an optimal algorithm for a problem p let

us consider the fastest known sequential algorithm. Suppose this algorithm runs in seq of

n time in the worst case then an optimal parallel algorithm for the same problem runs in

order of seq of n by p time using p processors.

In other words if the cost of a parallel algorithm is equal to seq of n then we say that the

parallel algorithm is optimal for example, consider the problem of merging.
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We know that 2 arrays of size n can be merged in theta of n time there excess a merging

algorithm that runs in order of n time and the lower bound for merging is omega of n on

an input of size n. So, the problem of merging 2 arrays of size n each has a complexity of

theta of n.

Let us say we have an algorithm that runs in log of n time using n by log n processors

then the cost of this algorithm is order of n this is an optimal algorithm in this column,

we write the time. So, we if we have an order log n time algorithm that runs in that runs

using n by log n processors, then the cost of the algorithm is order of n that is an optimal

algorithm.

If an algorithm runs in order of log squared n time an algorithm for merging runs in order

of log squared n time using n by log square n processors this has a cost of order n 2 and

therefore, this is optimal 2. If we have a merging algorithm that runs in order of log n

time using n processors then it has a cost of order of n log n this is not optimal because

the sequential time complexity of the problem of merging is order of n.
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If we consider the problem of sorting let us say comparison based sorting we know that

the  sequential  time  complexity  of  the  problem of  sorting  is  theta  of  n  log  n  if  the

comparison is the only operation that is allowed on the keys. This is because there is a

lower bound of omega n log n using comparison trees and we have algorithms that run in

order of n log n time for example, heap sort and merge sort both have a worst case time

complexity of order of n log n.

Therefore the problem has a complexity of theta  of n log n, if  we manage to find a

sorting algorithm that runs in order of log squared n time using n by log n processors

then this algorithm has a cost of order of n log n which is identical to the sequential

complexity  of the problem therefore,  this  algorithm is  optimal.  If  we have a sorting

algorithm that runs in order of log n time using n processors this again has a complexity

of the cost of order of n log n the processor time product of this algorithm is order of n

log n which is identical to the sequential complexity of the problem therefore, this is

optimal as well.

If a third algorithm runs in order of log square n time using n processors then the cost of

the algorithm is order of n log squared n which is the processor time product, but this is

not the time complexity of the problem in the sequential  setting therefore, this is not

optimal.  So,  now,  you  have  an  idea  of  what  an  optimal  algorithm  is  many  times

optimality is some more important concern than speed up.
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Now, we come to the notion of the degree of parallelism when we specify an algorithm

the algorithm will be usually divided into several steps, each step will have some number

of instructions specified for example, let us say we have an algorithm with 5 steps.

Let us say we have a parallel algorithm with 5 steps, in the first step let us say we have 4

instructions, in the second step we have let us say 3 instructions, in the third step we have

let  us say 9 instructions and so on. So, what this means is that,  the first step can be

executed in one clock cycle if we have 4 processors we say the degree of parallelism of

the first step is 4, similarly the degree of parallelism of the second step is 3, and the

degree of parallelism of a third step is 9, in general the degree of parallelism of a parallel

step is the number of instructions in it.

It is the same as the number of processors required to execute it in one clock cycle. So,

when we specify an algorithm it is not necessary that the degree of parallelism of every

step be the same.
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So, let us say we have an algorithm that is specified which has T steps let us say the

degrees  of  parallelism  of  the  steps  are  W 1 through  W T then  the  total  number  of

instructions  in  the algorithm we define as capital  T capital  W this is  the cost of the

algorithm,  the cost  of the parallel  algorithm is  capital  W that  is  the total  number of

instructions specified in the parallel algorithm.

If we have enough processors we will be able to execute this parallel  algorithm in T

steps,  but  what  is  that  enough  number  of  processors,  suppose  we  have  these  many

processors the number of processors is equal to the largest degree of parallelism. If the

number of processors available to us happens to be this then every single step of the

specified algorithm can be executed in one single clock cycle therefore, the total time

taken by the algorithm is capital T.

So,  the algorithm runs in  T steps,  but  it  is  possible  that  in  this  case the cost  of  the

simulation  the  cost  of  the  execution  is  omega  of  capital  W that  is  the  cost  of  the

execution need not be the same as the cost of the specified algorithm in particular. Let us

take an example where the first step of the algorithm has n log n instructions, let us say

the second step has a size of n the degree of parallelism of the second step is n.

So, is that the case for the third step and so is the case for every subsequent step let us

say we have a total of log n steps. So, here is a parallel algorithm that has log n steps the



degree  of  parallelism of  the  first  step  is  n  log  n for  every  other  step the  degree  of

parallelism is n. 

Therefore, the cost of this parallel algorithm is n log in plus n times log n minus 1 which

is order of n log n this is what the cost of the parallel algorithm is, but if we use n log n

processors then we will be able to execute every single step of this algorithm in one

single clock cycle and the execution will take exactly log n steps, but in this case we

would be using n log n processors and these n log n processes will have to be kept alive

for log n steps.

Therefore the cost of the execution would be order of n log square n which is way more

than the cost of the algorithm. So, if we use n log n processors then a large number of

processors will have to remain idle for a majority of the steps and these idle steps will

cause a lot of wastage. Now the question is, this is there an execution of this algorithm

that has a complexity identical to that of the cost of the parallel algorithm.

In fact, there is if the algorithm is specified on a self simulating model.
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So, let us assume that the model is self simulating this is crucial and let us say we have

small p processors.

Let us say with small p processors we try to simulate the various steps of the specified

algorithm, then the first step can be specified the simulated in W 1 by P ceiling steps, the



second step can be simulated in the ceiling of W 2 by steps W 2 by P steps and so on. So,

the simulation will take a total of this much time this we know is less than or equal to W

1 by P plus 1 W 2 by P plus 1 which is nothing, but capital W by P plus capital T if the

model is self simulating with small p processors this algorithm can be executed in this

much time.

What if we take small p as the ceiling of capital W by T, in this case we find that the

execution will take order of T time W by P will become capital T and that plus another

capital T will be order of capital T anyway. Therefore, this execution will take order of

capital T time and the cost of the algorithm therefore, is P into the execution time which

has order of W.

So, coming back to our previous example when we have an algorithm in which the first

step  has  a  degree  of  parallelism  of  n  log  n  and  every  other  step  has  a  degree  of

parallelism of n and there are log n steps. Then in this case capital W is order of n log n,

T is log n therefore, the number of processes you should use is order of n log n by log n

which is order of n.

So, if we have n processors let us see how the execution would proceed, the first step of

the algorithm which is which has the degree of parallelism of n log n can be simulated

with  n processors  in  order  of  log n time,  every subsequent  step  can  be executed  in

exactly one step with n processors therefore, the total time taken would be log n plus log

n minus 1, which is 2 log n minus 1 which is order of log in with n processors therefore,

the cost of the execution is order of n log n which is also the cost of the algorithm.

So, what we find is that with P equal to ceiling of W by T processors if we execute the

specified parallel algorithm the complexity of the cost of the execution is identical to the

specified cost of the parallel algorithm.
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This principle is called Brent’s scheduling principle; Brent’s scheduling principle allows

us to specify an algorithm with varying degrees of parallelism for it is steps that is we do

not have to explicitly worry about the processor allocation of the individual steps. We

can freely design the algorithm by choosing an appropriate degree of parallelism for

every single step. 

The fact that the degrees of parallelism vary from step to step will not affect the cost of

the execution using Brent scheduling principle we can still ensure that the cost of the

execution is identical to the cost of the specified cost of the parallel algorithm. The only

condition is that the model that we use must be a self simulating model that is it from this

lecture, hope to see you in the next lecture.


