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Lecture – 36
Ordered DFS is P-complete for NC-reductions

Welcome  to  the  36th  lecture  of  the  MOOC on Parallel  Algorithms.  In  the  previous

lecture, we found that the circuit value problem is P - complete for NC-reductions. We

did this by showing that an arbitrary language of the class P can be NC reduced to the

circuit value problem. Today we shall see that another problem, namely the order DFS

problem is P-complete for NC-reductions.

(Refer Slide Time: 00:55)

First let us define the problem, the ordered DFS problem is a decision problem. It is

defined as given a graph G equal to V, E; where V is a vertex set and E is the edge set,

specified by a fixed adjacency list and three particular vertices s, u and v of the graph is u

visited before v in a DFS of G starting at s? This is the question that we have to answer.

We are given a graph; the graph is specified using a particular adjacency list, we know

that the choice of the adjacency list representation we will decide the order in which the

vertices are visited in DFS.



So, given this adjacency list representation and three particular vertices s, u, v; you have

to decide whether  u  is  visited  before v in a  DFS,  which begins at  s.  So,  this  is  the

decision problem at hand. 

(Refer Slide Time: 02:24)

We want to show that the order DFS problem is P-complete for NC- reductions, proving

this as we know involves two steps. First of all we have to show that the order DFS

problem belongs to P, but this is easy to show you are familiar with the DFS algorithm.

You start DFS at s if u is visited before v, say yes else say no. 

We know that DFS on a graph of n vertices and m edges will run in order of n plus m

time,  the number  of  edges  in  the  graph is  at  most  order  of  n  squared.  So,  this  is  a

polynomial time algorithm. Therefore, ODFS belongs to P. So, this is the first part of the

proof. 



(Refer Slide Time: 03:30)

The second part of the proof involves saying that ODFS is at least as hard as CVP. In

fact, we shall consider a variant of CVP we shall consider what is called NOR CVP that

is we shall show that ODFS is at least as hard from the perspective of NC-reductions as

NOR CVP or we shall show that NOR CVP is NC reducible to ODFS. This will be the

second part  of the proof;  combining the two proofs,  we would have established that

ODFS is P-complete for NC-reductions.

(Refer Slide Time: 04:21)



Now, what is NOR CVP? NOR CVP is a variant of CVP. So, in this case we are given a

circuit as in CVP, the circuit consists of a sequence of gates, where each g i is either

signal 1, mind you g i is not allowed to have a value of 0, g i is either signal 1 or g i is g j

NOR g k, where j and k are less than i. 

(Refer Slide Time: 05:01)

So, if you are not familiar with this notation this stands for NOR, so that A NOR B is the

same as A or B negation.  So, NOR CVP is an instance of this form we are given a

sequence of gates and we have to say, if g n evaluates to 1 or not? This is the question we

have to answer. Now, it can be easily shown that NOR CVP is harder than CVP or CVP

is NC reducible to NOR CVP that is because when we are given an instance of CVP, we

can convert into an instance of NOR CVP. 

Mind you,  CVP is  a  general  Boolean circuit  and in  NOR CVP we are  supposed to

contain a Boolean circuit with only NOR gates. So, an instance of CVP can be converted

into an instance of NOR CVP by replacing every single gate of CVP with an equivalent

circuit using only NOR gates, this substitution can be done in the following manner. The

negation of a signal can be achieved like this, this is a NOR gate, this is because as you

can verify the NOR of A and A is a compliment. 

So, even if the circuit has only input values 1, we can generate the 0’s that we want by

negating the 1’s.  So,  0’s can be generated in this  manner and also negations  can be

generated in this manner using NOR gates. 



(Refer Slide Time: 06:41)

A or B is the same as A NOR B negation, but negation is already known to us, we know

how to create negation using a NOR gate. So, A NOR B NOR A NOR B is A or B. On

the other hand A and B by De-Morgan’s law is the negation of A or the negation of B

complemented, which is A negation NOR B negation; but A negation is A NOR A and B

negation  is  B NOR B.  So,  an AND gate  also can  be synthesized  using  NOR gates.

Therefore, given an instance of the circuit value problem, we can construct an equivalent

instance of the NOR circuit value problem. 
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So, that establishes that NOR CVP is P-complete for NC-reductions. So, this is the result

we are going to use we shall show that ODFS is NC reducible to NOR CVP.

(Refer Slide Time: 07:53)

So, let us say we are given an instance of NOR CVP. So, let us say g 1 through g n is that

instance, where each g i is either signal 1 or g j NOR g k for j and k less than i. So, the

reduction is affected in this manner we construct a graph G i G, the G that we are going

to construct shall have sub graphs that we call G 1 through G n. 
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So, sub graph G i capital G i shall correspond to signal g i or the output of gauge small g

i. And these units in particular will have these vertices, so if this is capital G i, it will

have a vertex named enter i and a vertex named exit i, it should also have a vertex named

s of i and a vertex named t of i. How these nodes are interconnected with in capital G i

we shall see in a moment, but let us first see the overall structure of the graph. 

If  this  is  G i  plus  1;  G i  plus  1 will  have enter  i  plus  1.  We shall  have  a  directed

connection from exit of i to enter of i plus 1, there shall be a connection of this form.

Similarly, enter i will have an edge coming into it from enter i minus 1, exit i minus 1.

Exit i minus 1 will belong to the sub graph G i minus 1. Of course, the first sub graph

which is G 1 shall correspond to input G 1, it will have a vertex called exit 1 which

connects to enter 2. It will have also have a vertex called enter 1, but there will be no

edge coming in to enter 1 that is because there is no unit before this. 

Similarly, the last unit will be a sub graph called G n, this will have a vertex called a exit

n with no out degree, exit n will not be connected to any other vertex that is because G n

is a last unit. Now, here there will be two particular vertices; s of n and t of n. Exit 1 will

be connected to exit 2, enter i exit i plus 1 will be connected to enter i plus 2, similarly,

enter n will be receiving an edge from exit n minus 1 and so on. 

So, apart from these connections that are shown in blue, there will also be some edges

some vertices that are common to multiple components. So, these components would

interact  even in some other  ways all  that  will  become clear, once I  show how these

components are designed.
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Now, let us see how these components are designed. If g i is an input of course signal 1

every input is of value 1, then G i is going to be a sub graph of this form. This is the

vertex called enter i, this vertex is named s of i and this vertex is named t of i, and this is

vertex named exit of i. Now, we have some vertices here which shall be named i a 1, i a 2

and so on. 

Here we assume that a 1 through a k are the gates or strictly speaking I should say g a

one through g a k. So, a 1 to a k are the indices of these gates, g a 1 through g a k are the

gates that use the output of g i as an input. If g i is in this case g i is an input itself

therefore, these are the gates that will use g i as an input. So, this is how graph G i will

look like if small g i is an input in particular g 1 is an input and therefore, sub graph g 1

will look exactly like this with i replaced by 1.
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Then, if g i happens to be the only other possibility for g i is that it is a NOR of g j and g

k or let me use different subscript g b 1 NOR g b 2 for b 1, b 2 less than i. If g i happens

to be a NOR of g b 1 and g b 2, then G i will be designed in this manner. Here we have a

vertex, which will be enter i and then we have 3 vertices of this form and we setup edges

of this sort. So, exactly as in the input case we have a connection to the exit vertex like

this, but we shall also have edges of this form. 

So, now let me label the vertices, this is vertex enter i, this corner as before is s i and this

corner as before is t i and here we have exit of i. This is as before i a 1; this is i, a 2 and

so on and this is i, a k. These vertices are numbered exactly as in the previous case, this

is the vertex b 1, i; this is the vertex b 2, i. 

So, as you can see b 1 of i belongs to G i as well as g b 1. So, similarly b 2, i belongs to

graph sub graph g b 2 as well as sub graph G i. So, as I said some vertices can belong to

multiple sub graphs. So, the sub graphs will interact in this manner as well some vertices

could be common to various sub graphs.

Now, there is one more piece of data to be added, which is the label for the edges. So,

first let us consider this graph and label the edges in this manner. I will put a label of 1

here, 1 here and 1 here when the label of an edge is the ordinal value of the edge within

the adjacency list of the originating vertex. So, at vertex i, a 1 what we say is that this

edge which is marked is going to be the first edge in the adjacency list of i, a 1. 



If an edge is unlabeled, it means its source vertex has only one edge and therefore, this

edge is labeled 1. So, every unlabeled edge by default has a label 1 and that is the only

edge belonging to the adjacency list of the source vertex. For example, enter i has a only

one  edge,  when g  i  is  an  input  and therefore,  the  edge going out  of  enter  i  is  left

unlabeled. Vertices i a 1, i a 2, etcetera are going to have multiple edges incident to them.

Therefore, we have to label the edge going out of it, this particular edges labeled 1.

Now, for the case where g i happens to be the NOR of 2 gates, the labels would be given

thus. Here we have a label of 1, here we have a label of 2 and here also we have a label

of 2, these two cross edges have labels of 2 each, these edges are label 1, this edge is

label 2, this is label 1, this is label 1, this is 1, this is 2, this is 1 and so on.

So, you can imagine that this would be 2, this would be 1 and this would be 1, this edge

is labeled 2. So, I think here we have labeled every single edge belonging to this graph.

The purpose of labeling the edges is that we are prioritizing certain edges over the others,

a an edge which is labeled 1 will be taken before an edge label 2 that is when this vertex

is visited. The first edge that is taken by the DFS is going to be the edge, which is label 1

out of this vertex. 

Only after all the searches that are accessible from that vertex are finished will the DFS

come back to this node and then trace the edge which is label 2, if the destination vertex

has not been visited yet, so that is the purpose of labeling the edges in the fashion. 
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Now, how do we achieve the reduction now? This reduction is going to be claimed using

a theorem, we want to claim that for all i, if g i evaluates to 1, then DFS of s of i is less

than DFS of t of i and in G i the path taken by the DFS is from enter of i to s of i down

the stairs to t of i to exit of i.

In this picture, the path that we are talking about will be starting at enter of i traveling

through b 1 of i, b 2 of i and then coming to s of i. And then going down the path labeled

1 and then through the edge label 2 to i of a 1 and then out through the edge labeled 1,

and then to i of a 2 and so on; i of a 1, i of a 2, etcetera will be visited in turn. So, this

will create the impression of taking the stairs downwards, until we reach the vertex t i

and then we exit through exit of i. 

In other words, we will be traveling in this manner the path taken would be like this, if g

of i evaluates to 1 and the statement is not complete. 

(Refer Slide Time: 19:39)

And if g of i evaluates to 0, which is the other possibility then dfs of t of i will turn out to

be less than dfs of s of i, which means t of i will be visited before s of i. And as supposed

to the previous case, in g i the path taken by the DFS will be different now. It will start

from enter of i within g of i go to t of i and then through the lift up to s of i and then to

exit of i. 



Going back to the figure once again, starting at enter of i we would take the edge label 2

to come to t of i. From t of i we take the edge which is labeled 1 to go up from there

again we will take the edge which is labeled 1 to go up and so on, going all the way up to

s of i. This going up is what I termed taking the lift upwards. So, from t of i to s of i we

take the lift upwards, traveling through the straight edges until we reaches of i, after that

we take the edge which is labeled 2 to come to exit of i and then get out. 

So, in this case the path trace would be like this. So, once again the claim that we make

is this, for every i if g i evaluates to 1, then s i will be visited before t of i and if g i

evaluates to 0, then t of i will be visited before s of i by the dfs. And moreover, if g of i

evaluates to 1, the path taken by the dfs in G i would look like this one. On the other

hand, if g i evaluates to 0, the path taken within G i by the dfs would look like this. So,

this is our claim. 

(Refer Slide Time: 21:38)

So, we shall prove this by induction. For basis let us consider i equal to 1, g 1 has to be

an input of value 1. Therefore, according to our claim for our claim to be true, we should

have a path of this sort traced within g 1. So, let us see what would how would the dfs go

within g 1. So, g 1 is an instance of this i replace by 1. 

So, the dfs will begin with enter 1, there is only one way for the dfs to go which is to s of

1 and from there, there is only one way to go from there it will go to i of a 1. At i of a 1,

the dfs will naturally take the edge which is labeled 1, so it climbs down. And then again



there is only one way to go which is to i of a 2, from there again it will take the edge

which is labeled 1 and so on it takes the stairs downwards, until it reaches t of i.

There is no other way for the dfs to explore; the dfs must necessarily travel through this,

because all these edges with labels have labels 1. So, from t of i, it will go to exit of i and

then come out of g 1. So, all the vertices of g 1 would be visited in this manner, therefore

the statement holds good. In other words, s of 1 is visited before t of 1 and the path in G

1 is of this form. So, the statement holds good for i equal to 1. 

(Refer Slide Time: 23:09)

Now, as an induction hypothesis let me assume that the claim is true for all the previous

gates. And then in the induction step, I am considering the i th gate. Now, for the i th gate

there are two possibilities; one is the g i is an input, an input of value 1. 

In this case, g i is identical to g 1. So, is capital G i to capital G 1 therefore, dfs will

proceed exactly as it did in G 1. And therefore, path that we obtain is of this sort and s of

i will be visited before t of i and in particular G i evaluates to 1 therefore, the claim holds

good.
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 On the other hand, if g of i happens to be the NOR of 2 gates g b 1 and g b 2, then let us

see. Then there are various possibilities, the first of the possibilities is that g b 1 and g b 2

both evaluate to 0. Therefore by induction hypothesis in G b 1 and G b 2, the paths taken

were of this form, just we had a path of this form in both G b 1 and G b 2. 

Now, imagine the graph g b 1 in g b 1; b 1 i was a vertex on the right hand side like this.

In g b 1 this is g i instead if you imagine g b 1 here, i is a vertex that is to come later

therefore, I mean i is a gate which will use the output of g b 1. Therefore, the vertex b 1, i

would appear on the right side. Now, we know that g b 1 evaluated to 0 therefore, in g b

1 the path taken was from enter 1 to t of i and then up through the lift out through exit i,

which means all these vertices on the right hand side had not been visited. 

Which means in particular, all the edges which are labeled one out of these vertices on

the right hand side have been taken, but vertices b 1 i has not been visited in particular

and this is indeed the case with g b 2 as well. Therefore, we find that in G i b 1, i and b 2,

i are unvisited, these are unvisited vertices. 

Once again go back going back to the figure, now let us see how the dfs would proceed

within G of i, when the dfs begins at enter of i, it tends to take the edge which is labeled

1; it explore along the edge labeled 1, it comes to b 1 i; b 1 i has not been visited before.

Therefore, it will take the edge, which is labeled 2 out of this. So, when you come to b 1,

i it would explore the edge which is labeled 1 out of b 1 i; but this takes us to a vertex



which has already been visited in g b 1. Therefore, we backtrack come back to b 1 i and

take the edge which is label 2.

So, we have now reached b 2 of i; b 2, i, but b 2, i have not been visited before therefore,

we visit b 2, i there is no backtracking. And then we consider the edge which is labeled 1

out of b 2, i; which again takes us to a vertex that is visited before in g b 2 therefore, we

backtrack come to b 2, i and we proceed to s of i.

Once we are at s i we take the edge labeled 1 to go down the line from there the edge

which is labeled 1 is going backwards that vertex is already been visited that is vertex s i

has already been visited. Therefore, we would be going to i, a 1 from there we would

take the edge which is labeled 1 to come to the vertex on the right side, which from there

again vertex 1, edge labeled 1 is taking us back to the vertex which is already been

visited.

So, we would be taking the edge which is labeled 2 to come to i, a 2. And we continue in

this fashion visiting i, a 1, i, a 2, i, a 3; etcetera in turn until we come to i, a k. Once we

are at i, a k again we take the edge which is labeled 1 we come to t i, once we are at t i

the edge which is labeled 1 is taking us backwards to a vertex which is already visited.

So, we do not take this edge we backtrack to t i and take the edge which is label 2 that

will take us to exit of i. So, what we find is that the path that the DFS traces is from enter

i to b 1, i; to b 2, i; to s of i and then through i, a 1; i, a 2 through i, a k then t i and then

exit i. 

This is exactly what the claim was since b 1, i and b 1, i were unvisited we were allowed

to move along the path and therefore, in G i we trace a path of this form which is exactly

according to the claim,  this  is the sort  of a path that we trace within G i.  And then

obviously, s of i is visited before t of i, DFS of s of i is less than the DFS of t of i. So, in

this case the claim holds good. 
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Now, let us consider the second case. In this case, let us say g b 1 equal to 1 or g b 2

equal to 1, at least one of them is 1 then g i evaluates to 0, g i happens to be the NOR of

these two g b 1 and g b 2, g i evaluates to 0. What this means is that, when we visited one

of the two graphs g b 1 and g b 2, we had taken this path; where s of b 1 came before t of

b 1 that is of g b 1 had a value of 1. On the other hand, if g b 2 had a value of 1, then we

would have done the same in g b 2. 

So, in at least one of the two graphs we had taken this path. Now, what does it entail? It

means that  the rightmost vertices  had all  been visited among them would have been

either b1 of i; b 1, i or b 2, i. So, at least one of these two vertices b 1, i and b 2, i have

been visited before. Therefore, when dfs starts at enter i here now, what happens is this it

proceeds to b 1, i; if b 1, i had not been visited before, then we would proceed to b 2, i;

but then we know that at least one of them has been visited. So, at one of these vertices

we will backtrack, we will not be allowed to proceed further.

So, we backtrack all the way to enter i, once we are back at enter i, we attempt a search

through the next available edge which is the edge that is label 2 that will take us to t i; t i

has not been visited before, but once we are at t i we trace the edge which is labeled 1

that will take us up. So, we are now taking the lift upwards at each of these vertices we

take the edge that is labeled 1. So, these edges will take us up to s i through the lift.



Once we are at s i, the edge which is labeled 1 is taking us back to a vertex that is already

visited therefore, we should make an attempt through the edge which is labeled 2 that

will take us to exit i. Now, we go out of graph g i. So, what we find is that the path traced

happens to be in G i we take a path of this sort this is enter of i and this is exit of i. But in

this case this vertex t of i is visited before s of i that is precisely what the claim was that t

of i is visited before s of i or dfs t of i is less than dfs s of i. 

So, once again the claim holds good, so that completes the induction therefore the claim

is true. Once the claim is true, we can apply the claim to g n therefore, we find that in g n

vertex s n is visited before vertex t n, precisely when gate g n evaluates to 1. Now, that is

precisely our problem was with NOR CVP, we were given the circuit and we wanted to

check.
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Whether g n evaluates to 2 or not, does g 1, g n evaluate to 1? This was our question,

what we find is that this happens if and only if dfs of s of n is less than dfs of t of n, but

this  relation  can  be  checked  by  invoking  ODFS on  the  graph  with  three  particular

vertices. These are enter 1, the dfs must begin with enter 1 and then s of n and t of n. If

this is affirmative, then g n evaluates to 1. 

So, the NC - reduction that we are talking about involves this, given an instance of the

NOR CVP circuit, we construct the graph g in this manner. And then invoke ODFS on

this graph, but then how do you construct the graph? Constructing of the graph requires



establishing sequences of certain sort. We have to establish sequences of vertices of the

sort,  but  then  you  know  all  those  can  be  done  in  poly  logarithmic  time  using  a

polynomial number of processors. 

Therefore, setting above the graph is indeed an NC work, so that establishes that the

problem of NOR CVP can be reduced to ODFS that completes the second part of the

proof.
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Therefore, putting the two parts we know that ODFS is a P-complete for NC-reductions

which  is  a  bit  of  a  setback,  because  dfs  is  one  of  the  most  elementary  sequential

algorithms and forms a subroutine to many algorithms, but here we find that DFS is not

easily parallelizable. So, in the parallel setting DFS is not an easy problem. In the next

class we shall show that the max flow problem is P-complete for NC-reductions as well

therefore, we cannot expect to have efficient parallelization for that problem as well that

is it from this lecture, hope to see you in the next.

Thank you.


	Ordered DFS is P-complete for NC-reductions

