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Welcome  to  the  13th  lecture  of  the  MOOC on Parallel  Algorithms.  In  the  previous

lecture, we were looking at some symmetry properties of a Hypercube. In particular we

want to find an automorphism of a hypercube which will permeate the dimensions the

way we want and map a particular node to a chosen node.

(Refer Slide Time: 00:53)

In particular what we want is this, let us say we have a hypercube H r which is an r

dimensional hyper cube and let us say, we are given a permutation pi of a the set 1 to r

which are the dimension set. So, what we want is to realize the permutations? In other

words, we want the pi ith dimension to be mapped to the ith dimension. 



(Refer Slide Time: 01:53)

And we want in particular that vertex u must be mapped to vertex u prime. So, we want

an automorphism of the hypercube which will satisfy these conditions. An automorphism

sigma of a graph is a mapping from V to V the set of vertices to the set of vertices, it is a

1 to 1 mapping. And so that sigma u sigma v belongs to the edge set of the graph for

every u v belonging to E. In other words an automorphism is a renaming of the vertices

of the graph so that. 

After the renaming after to the renaming the graph is exactly similar to the original graph

it is exactly the same as the original graph. In spite of the renaming we get an exact

replica  of  the  original  graph.  If  this  is  the  case  then  we  say  that,  sigma  is  an

automorphism clearly, every graph is not with an automorphism, only some graphs have

an automorphism as an example that we saw in the last class. 



(Refer Slide Time: 03:27)

A 3 clique in particular it is an automorphism; however, you renumber the vertices the

graph remains the same; so, this is an automorphism some of the 3 clique. Similarly,

what we want is an automorphism of the hypercube which will map a particular node u

to u prime. So, let us say the vertex u has the binary representation, u is a node of an r

dimensional hypercube therefore, you will have r bits to it.

(Refer Slide Time: 03:53)

So, let u one be the most significant bit and u r be the least significant bit. Similarly, let

us say u prime is u prime 1 through u prime r. What we want is that? U must be mapped



to  u  prime  and  similarly  along  with  that  permutation  pi  has  to  be  realized  and the

resultant renaming should again be the naming of a hypercube. What it means is that?

After the renaming two vertices should be adjacent precisely when they are differ in

exactly 1 bit. 

As per the new name of course, this property is satisfied according to the old names

because what we have is an r dimensional hyper cube with the conventional naming for

the  vertices.  Now, what  we  want  is  to  rename  the  vertices  so,  that  even  after  the

renaming this property will be satisfied there is two vertices are adjacent if and only if

their new names differ by exactly 1 bit.

(Refer Slide Time: 05:38)

So, the naming scheme is this for a vertex named x 1 through x r the new name is going

to be this vertical bar represents a concatenation. Now, we claim that if the vertices are

renamed  according  to  the  scheme,  what  we achieve  is  an  automorphism which  will

permute the dimensions according to pi and map u to u prime.

Now, let us see why the claims write. In particular consider two vertices; consider the

two vertices u and u prime, u is u 1 through u r. Let us see where u gets mapped to sigma

of u happens to be u of pi 1 exclusive r u of pi 1 exclusive r u 1 prime concatenated by

bits obtained in a similar manner. Now, look at this expression u pi 1 exclusive or u pi 1

is 0 a bit exclusive odd with itself will give us 0; exclusive are being associative we can

evaluate this expression anyhow, we can parenthesize them anyhow.



So, when we parenthesize the first two we get a 0, then the expression reduces to 0

exclusive or u 1 prime which is nothing but u 1 prime; so, this reduces to u 1 prime and

the second bit reduces to u 2 prime and so on. 

(Refer Slide Time: 07:47)

Therefore, what we have obtained is that sigma of u is the same as u prime this is of

course, 1 condition we wanted, we wanted u to be map to u prime. Now, the second

claim was that the dimensions are permuted according to the way we wanted according

to pi. So, let us establish that claim in particular for every node x 1 through x r, the new

name is going to be the first bit of the new name is going to be this in particular that is x

1 is replaced with this or rather x pi 1 which happens to be the pi first bit of the present

name. 

So, in x 1 through x r we have x pi 1 somewhere. This bit is getting transposed to the

first  position  in  the  new  name  with  an  appropriate  modification.  The  bit  will  be

transposed  using  u  pi  1  exclusive  or  u  1  prime  depending  on  whether  along  this

dimension we want to turn the cube inside out or not. Similarly, the x pi 2 bit will appear

at the second position which means the pi 2 dimension is going to the second dimension

and so on.

So, what we find is that as far as the naming is concerned? The pi ith bit of the present

name is going to be transposed into the ith bit of the new name. Of course, the bit will



undergo a transposition based on u pi often exclusive or u 1 prime. So, in the naming of

course, the dimensions are being permitted exactly the way we want.

(Refer Slide Time: 09:55)

Now, let us consider an a pi ith dimensional edge in particular let us consider the node x

and the node x prime let x prime be identical to x except in the pi ith bit where it as in the

complement, at every other bit position x and x prime agree, then what would sigma of x

and sigma of x prime be. They will agree on all bit positions except the ith one that is

because at the first position if 1 is not equal to i. At the first position we have this at the

first bit of sigma of x; which is identical to the first bit of sigma of x prime provided that

1 is not equal to i, but at the ith position here we have x of pi i whereas, here we have x

of pi i complement exclusive ORed with the same expression. 



(Refer Slide Time: 11:57)

So, you can see that at the ith, but sigma of x and sigma of x prime differ at every other

bit  position  they  are  identical.  Therefore,  the  automorphism  sigma  satisfies  the

requirements  namely  that  it  maps  u  to  u  prime  it  realizes  the  permutation  of  the

dimensions. So, there indeed exists an automorphism which satisfies these requirements.

Given any permutation of the dimensions and a pair of vertices u and u prime you can

find an automorphism which realizes the permutation that is it permutes the dimensions

according to pi and also maps u to u prime, that is the new name under sigma of u will be

u prime.

(Refer Slide Time: 12:52)



As an extension to this let us say we are given two edges u v and u prime v prime. And

let us say we want to map u v to u prime v prime using an automorphism. Now, this is

easily achieved suppose u v is along dimension k that is the binary representations of the

numerals u and v differ exactly in the kth bit and only at the kth bit. And let us say u

prime v prime it is along dimension k prime, then we can construct a pi so that pi of k

prime equal to k. 

(Refer Slide Time: 14:09)

In that case, if we realize pi using the mapping u to u prime, we would have achieved

what we wanted that is the edge uv will be will have been mapped to u prime u prime v1

prime, then we will have to edge uv mapping to u prime v prime. So, let me clarify what

I have been saying using an example. 



(Refer Slide Time: 14:42)

Let us say we have a 3 dimensional hyper cube. In this hypercube let us say we have a

permutation pi defined like this pi 1 equal to 1, pi 2 equal to 3 and pi 3 equal to 2. That is

we want to interchange the dimensions to n 3, that is dimension 2 should occupy the

position of 3 and dimension 3 should occupy the position of 2.

So, we want to turn the hypercube around in this manner and in particular let us say, we

want node 0 0 0 to map to node 1 1 0. So, 0 0 0 is u and 1 1 0 is u prime. So, given a

permutation pi of the sort and a pair of vertices u and u prime in this manner let us say

we want to find an automorphism sigma. 



(Refer Slide Time: 15:42)

The automorphism sigma can be obtained like this sigma of x for any vertex labeled x

which is x 1, x 2, x 3 the automorphism will have to be x of pi 1 exclusive or u of pi 1; u

of  pi  1  happens  to  be  u  1  indeed  exclusive  or  u  1  prime.  Concatenation  x  of  pi  2

exclusive or u 1, u of pi 1 which is u 3 exclusive or u prime and then x of pi 3 exclusive

or u 2 exclusive or u 2, u 3 prime. But of course, we know that pi 1 is 1 and pi 2 is 3 and

pi 3 is therefore, we can simplify the expression to be like this.

Now, let us substitute the values of u 1 nu, u 1, u 2 and u 3 and u 1 prime, u 2 prime and

u 3 prime. Now, u is 0 0 0, u prime is 1 1 0 therefore, all these u 1, u 2, u 3 will go to 0

therefore, the expression simplifies to 0 here; which means, these can be simplified to u 1

prime, u 2 prime and u 3 prime respectively. So, this becomes x 1 exclusive or u 1 prime;

u 1 prime is 1, x 2, x 3 exclusive or u 2 prime which is also 1 and then x 2 exclusive or u

3 prime which is 0.

So, this simplifies to x 1 bar, x 3 bar and x 2. So, this will be the new name of the vertex

which is named x now, this will be an automophism as we argued earlier.



(Refer Slide Time: 17:46)

So, let us see how the mapping goes the eight hypercube vertices, we have to flip the first

bit and the third bit and then contact me in the second bit over that. So, this is indeed as

we wanted we wanted 0 0 0 to be mapped to 1 1 0. Here, we have the first bit and the

third bit flipped second bit replicated, 1 0 flips to 0 1 and then 0, 1 1 flips to 0 0 and then

0, 1 0 flips to 0 1 and then 1 1 1 flips to 0 0 that is 1. So, this is how the mapping will go.

So,  if  the  nodes  are  we  numbered  in  this  fashion  then  we  find  that  the  hypercube

properties are satisfied that is the same adjacencies are maintained and what we get us

therefore, an automophism. So, this is a nice symmetric property of a hypercube, you can

permute the dimensions while mapping a particular node to a particular node. If our goal

was  merely  permuting  the  dimensions,  then  we  would  have  multiple  options.  For

example, instead of mapping u to u prime for the same permutation of the dimensions we

could realize eight possibilities, that is for each bit whether we want to flip the bit or not

will decide what the automorphism would be.

So, there would be eight automophism realizing the same permutation of dimensions, but

when we want to map a particular node to a particular node that is in this case u 2 u

prime triple 0 to 1 1 0 then there is only 1 automorphism which realizes that. Now let us

see an interesting consequence of this establishes some nice embedding properties, but

first a negative result.
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Consider a complete binary tree of n minus 1 nodes, then naturally n is a power of 2 so,

in the complete binary tree we have 1 root, 2 children to the root, 4 grandchildren to the

root and so on. At the lowest level we have 2 power k minus 1 leaves. The smallest

hypercube with more nodes than this would be H k; H k has 2 power k nodes. So, it

would be interesting to check if a complete binary tree with k levels can be embedded in

H k the answer happens to be know. 

(Refer Slide Time: 21:10)



A complete binary tree of k levels with the level numbers going from 0 to k minus 1 and

the root at the 0th level we have 1 node at the next level we have 2 nodes and so on, at

the bottommost level we have 2 power k minus 1 nodes. Let us say, 2 power k is n so, we

consider  the  complete  binary  tree  of  k  levels.  Let  us  hypothesize  that,  this  can  be

embedded in a hypercube of k dimensions. 

(Refer Slide Time: 22:04)

Suppose a complete binary tree of k levels embeds in H k. Now, what we know about the

hypercube is this? Two nodes of hypercube differ by exactly one bit if and only if they

are adjacent. Now, if the tree embeds in a hypercube then the adjacent vertices of the tree

will be embedding two adjacent nodes of the hypercube therefore, there labels would be

differing by exactly one bit position.



(Refer Slide Time: 22:55)

What this means is this? If the label of a node has even parity then its children and

parents have odd parity and vice versa. 

(Refer Slide Time: 23:39)

So, what I mean by this is this consider a tree node; a node of the complete binary tree of

k levels consider its parent and it is children. Let us say, this node maps to a particular

node of the hypercube of the k dimensional hypercube. Now, this hypercube node has

some name given to it, this node also has k adjacent nodes in the hypercube, one along



each  dimension  there  are  k  dimensions.  So,  this  node  has  k  neighbors  along  each

dimension. 

Now, all these neighbors differ from this node in exactly one bit position therefore, all of

them will have a different parity; if this node has an odd parity then all it is neighbors

would have an even parity because all of them differ in exactly one bit. Whatever be the

bit that you flip the parity would flip, if this node has an odd parity then all the neighbors

would have even parity and if this node has an even parity then all the neighbors would

have an odd parity. Therefore, what we knows this? If an embedding is possible then for

every single node of the complete binary tree the parent as well as the children are of

different parity after the embedding in the hypercube.

(Refer Slide Time: 25:12)

Now, let us say the root maps to a node of odd parity then all it is children are of even

parity, then all the grandchildren are of odd parity and so on. If the root were of an even

parity then all the children will be of odd parity, all the grandchildren would be of an

even parity and so on. In any case, as you hit the bottom depending on whether k is odd

or even or an the parity that you chose for the root what we find that all the leaves are of

the same parity. And all the penultimate nodes all the parents of the leaves are of the

opposite parity and then all the grandparents of the leaves are of the same parity as the

leaves. 



What that means is that, the leaves as well as their grandparents are of the same parity,

but in a tree of 2 power k minus 1 nodes, there are 2 power k leaves and there are 2

power k minus 2 grandparents which means there are 2 power k plus 2 power, 2 power k

minus 1 plus 2 power k minus 3 we are considering a tree of k levels. So, the number of

leaves is 2 power k minus 1 and the number of their grandparents is 2 power k minus 3.

So, these many nodes are of the same parity. 

(Refer Slide Time: 27:13)

But 2 power k minus 1 is n by 2 and 2 power k minus 3 is n by 8 this is 5 n by 8 greater

than n by 2; what it means is that? More than n by 2 nodes of H k are of the same parity

which cannot be this is the contradiction that is because in a hypercube of k dimensions

there are 2 power k nodes. Every possible k bit binary string will be used as a name by

some vertex or the other  of the hypercube therefore,  the number of vertices  of even

parity is exactly equal to the number of vertices of the odd parity.

Therefore, if you consider a hypercube of n-nodes the number of odd parity vertices is n

by 2 and the number of even parity vertices is n by 2. Here, what we find is that from the

embedding of the  complete  binary tree in  H k.  We conclude that  more than n by 2

vertices of H k are of the same parity which is a contradiction which means, the complete

binary  tree  just  cannot  be  embedded  in  a  hypercube  of  1  extra  node.  But  then  the

situation is not quite hopeless as far as complete binary trees are concerned, a minor

variant of a complete binary tree called a double rooted. 



(Refer Slide Time: 28:41)

Complete binary tree is embeddable in a hypercube. A double rooted complete binary

tree can be obtained in this fashion consider a binary tree this can be converted into a

double root complete binary tree by splitting the root into 2 nodes. The left root will be

the parent of the earlier left child and the right root will be the parent of the earlier right

child, the rest of the tree remains exactly the same. 

So, all that has happened to the tree is that the root splits into two separate nodes. So, this

modified tree has 2 roots let us say we interconnect the roots using a new edge. So, the 1

single root that the complete binary tree had is replaced with an edge. So, in a complete

binary tree of k levels we will have 2 power k minus 1 leaves here also we have 2 power

k minus 1 leaves, the tree has changed only at the root, the total number of nodes here is

2 power k minus 1 whereas, the total number of nodes here is 2 power k. 



(Refer Slide Time: 30:34)

Now, what our result is? This a double root at complete binary tree can be embedded in a

hypercube of the same number of nodes. 

(Refer Slide Time: 31:05)

The proof is by induction in the basis case we consider a complete binary tree of 2 leaves

which is CBT 1, when this is double rooted we get this tree instead this is DRCBT 1.

Quite clearly, this is embeddable in a hypercube of 2 dimensions sorry this is DRCBT 2.



 So, DRCBT 2 is embeddable in a hypercube of; now, let us consider a hypercube of k

dimensions and show that we can have a double root complete binary tree of the same

number of nodes embedded in it.

(Refer Slide Time: 32:03)

So, let us consider H k. From H k we can construct two smaller hyper cubes by removing

the first dimension edges. 

(Refer Slide Time: 32:47)

In particular let us say we have double root complete binary trees of 2 power k minus 1

nodes embedded in the H k 1 H k minus 1’s. That is by removing all k dimension, for all



first dimensional edges we get 2 H k minus 1’s. In each of these H k minus 1’s, we

embed a double rooted complete binary tree. 

So, let us say the embeddings are like this. So, these double rooted complete binary trees

have been embedded in H k minus 1s. So, this is 1 H k minus 1 and this is another H k

minus 1. Let us say, this is dimension 1 and this is dimension 2, the embedding that we

use have these properties. Now let us take a mirror image of this embedding for the other

hypercube.  So,  therefore,  this  is  dimension  2  and  this  is  dimension  1,  that  is  after

embedding a double rooted complete binary tree of 2 power k minus 1 nodes in H k

minus 1, we take two such copies one being the mirror image of the other. And then in

the second copy we realize a permutation of the embeddings the dimensions.

So,  that  1  and  2  get  flipped;  dimensions  1  and  2  are  interchanged  in  the  second

embedding. So, the now the embeddings look like this, let us see how the namings of the

nodes would be, let us say those node is named starting with triple 0 and this is some

name starting with 1 double 0, the blank could be anything and this let us say is starting

with 0 1 0. So, the blank has to be some same x everywhere that is in the embeddings, I

have chosen 1 double 0 x, 2; 2 0 double 0 x to be the root of the double rooted complete

binary tree.

Similarly, on this side since this is a mirror image I will have a triple 0 x as the name of

this node, one of the roots and since here dimensions 1 and 2 have been interchanged

here i will have 0 1 0 x as the name of this node and the name of the left child would be 1

0 0 x.

Now, these are the respective names in the 2 copies of H k minus 1s what we have

assumed is  that  double  root  complete  binary  trees  of  2  power  k  minus  1  nodes  are

embeddable in the 2 H k minus 1’s, I assume that the 2 H k minus 1’s are mirror images

of each other. And then in the second H k minus 1, I permute a dimensions 1 and 2,

therefore,  the  names  of  the  vertices  would  be  as  they  are  now. Then,  for  the  first

dimension I will add a 0 here to all the nodes and I will add a 1 here to all these nodes,

then we find that 0 1 double 0 x is adjacent along the first dimension 2; 1 double 0 x. 

So, we have a hypercube edge of the sort and 0 double 0 1 0 x is adjacent to 1 0 1 0 x

along dimension 1 so, we have an edge of this sort as well and double 0 double 0 x is

adjacent to 1 doubles 1 triple 0 x therefore, we have an edge of this sort also. All the red



edges are dimension 1 edges; so, we have dimension one adjacencies of the sort. Now we

see that, we are coming pretty close to a double rooted complete binary tree of 2 power k

nodes, if only we delete a couple of edges delete this edge as well as this edge. 

What we now find us that, a double rooted complete binary tree with double 0, double 0

x and 1 0 double 0 x as the double roots this now formed within the k dimensional hyper

cube. So, this is establishes that a 2 power k nodes double rooted complete binary tree

can be embedded in a hypercube of k dimensions.

(Refer Slide Time: 37:42)

In other words all  complete binary tree algorithms can be executed on double rooted

complete binary trees that order 1 extra cost; order 1 factor extra cost. That is because all

the operations of the root of the complete binary tree can be executed in twice the time

by the double roots together, that is the 2 roots together will function as a single node and

they can send messages to each other and with 1 exchange of messages in 2 steps the

double root can simulate every operation of the single root of a CBT. 

Therefore, every CBT algorithm can be simulated on a double root of complete binary

tree in twice a time.  And a double root to  complete  binary tree is  embeddable on a

hypercube therefore, whatever you do on CBT can be executed on a hypercube at most

twice the time.



So, this establishes a versatility of hypercubes as far as simulations are concerned. So,

we now know that linear array algorithms, multi-dimensional meshes, complete binary

tree algorithms and as an extension to that mesh of trees algorithms and how going to

prove this here, but mesh of trees algorithms all can be simulated on a hypercube, at no

additional  cost  that  is  only  order  1  extra  factor  would  be  necessary  for  all  these

simulations. However, the hypercube architecture has a disadvantage. 

(Refer Slide Time: 39:41)

The degree of every node in an N-node hypercube this order of log n this theta of is

exactly  log N.  Whereas,  all  the  other  interconnection  networks  that  we were  talking

about the linear arrays, k dimensional meshes for a constant k and the complete binary

trees or mesh of trees for a constant dimension in all these cases if the degree of every

single vertex is a constant.

So, these are all constant degree graphs whereas, a hypercube is a log N degree graph

when the number of nodes is N. Therefore, a hypercube is something of an impractical

network  in  spite  of  it  is  versatility. But  then  there are  networks  which  can  simulate

hypercube algorithms, but those networks are still bounded degree networks. So, they

have the advantage of both sides they retain the versatility of hypercube networks, but at

the same time they are more practical in the sense that the maximum vertex degree of

every single node is a constant. 
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One such network is the butterfly network. In an r dimensional butterfly network has r

plus 1 into 2 power nodes. The nodes are arranged in 2 power r rows and r plus 1 column

and we place r into 2 power r plus 1 edges among them. 

(Refer Slide Time: 42:05)

The adjacent c is are established in this manner nodes w, i and w prime, i prime are

adjacent. If and only if i prime is equal to i plus 1 and either w is equal to w prime or w

and w prime are differ exactly in the ith bit. 
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So,  let  us  see  how some butterflies  look like.  Let  us  consider  the  first  dimensional

butterfly;  in a first dimensional butterfly we have to power 1 nodes to power 1 rows

numbered 0 and 1 respectively and we have 2 columns named 0 and 1. And then we have

interconnections like this. So, you can verify that these interconnections are according to

the definition we have seen just now. 

In a 2 dimensional case we have a three columns numbered 0 1 2 and we have four rows;

numbered  0  1  2  3  and  the  interconnections  are  made  in  this  fashion  and  the

interconnections are made in this fashion. Once again verify that they are according to

the definition that is nodes w i and w prime, i prime are adjacent precisely according to

the definition here. 
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So, now, you can see why the network is called a butterfly network. When we go to the

3rd dimension, we will require eight rows and four columns r s 3 here therefore, r plus 1

is 4; so, we require 4 columns between the first column in the second you have to draw

edges in this fashion so, this is a 3 dimensional butterfly network. 

So, what is the advantage of a butterfly network over a hypercube? You can see that

every node has a degree less than or equal to 4. The vertices of first column as well as the

last column have a degree of 2 each, all the other vertices have a degree of 4 each. So,

we have a constant degree graph indeed which is more practical than a hypercube which

has and non constant vertex degree.
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Now,  what  is  the  relationship  to  a  butterfly  and  hypercube.  Let  us  consider  an  r

dimensional butterfly and an r dimensional hypercube. When you look at the picture we

find that, if you collapse every single row of a butterfly by fusing the vertices together,

then we find that the cross edges of the between the first column and the second will

form the first dimensional edges for the fused vertices, that is when all the vertices of the

first row are fusing together to form one single vertex.

So, this we label by the name of the row 0 so, this is the 0’th row of the modified graph

and let us consider the 4’th row, the vertices of the 4’th row will also fuse to form one

single vertex. Now we find that this fused vertex of name 0 and the fused vertex of name

4 are adjacent using the cross edges of the butterfly network that are there between the

first column and the second column. Similarly, when I consider nodes 0 and 2 the fuse

nodes 0 and 2 we find that they are adjacent using the cross edges between columns 1 in

2 and nodes 0 and 1 are adjacent using the cross edges between columns 2 and 3.

So, what this establishes the is that? Every fused edge; every collapsed edge, collapse

vertices vertex is adjacent to exactly those collapse vertices that differ exactly in 1 bit. In

other words, the graph that you obtain when you fuse all the rows into 1 single vertex is a

hypercube of our dimensions, that is you can convert a butterfly of r dimensions into a

hypercube of r dimensions by collapsing every single row into a single vertex. 
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Therefore, any algorithm that you run on a hypercube of dimensions r can be run on a

butterfly of r dimensions in order of r prime. One single node of a H r is converted into 1

entire row of butterfly r. Therefore, a T-time algorithm on H r runs in order of Tr time on

butterfly r or in other words if you consider a hypercube of n-nodes r is log n therefore,

we will have an order log n extra factor in the running time, whatever you do in T-time

on hypercube of n-nodes can be done in order of T log n time on a butterfly of dimension

log n.

So, butterfly is quite versatile whatever you do on a hypercube can be similar to run a

butterfly at a small extra cost and then it also has this nice property that every vertex is of

a constant degree. More about butterflies and similar networks in the next class hope to

see you in the next.

Thank you.


