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Welcome to the 21st lecture of the MOOC on Parallel Algorithms. In the previous lecture

we  were  proving  a  lower  bound  for  sorting  on  the  parallel  comparison  model;  in

particular we had the expression c t n which represents the number of comparisons that

you must necessarily perform if  you try to sort  n elements  in t  steps on the parallel

comparison model. So, we were seeking to prove a bound for c t of n.

 (Refer Slide Time: 00:59)

In particular we wanted to show that c t of n is greater than or equal to t n power 1 plus 1

by t divided by e minus n t. We proved the basis which involved showing that the claim

holds for all ordered pairs of the form c 1 n and all ordered pairs of the form c t 1, this we

had done in the last lecture. Now we were considering the expression C T of N where T

and N are specific values of small t and small n.

What we assumed is that by the way of hypothesis the statement held for all values of

small n and small t that are less than capital N and capital T respectively. For example,

we assumed that for all n t such that n is less than or equal to capital N and t is less than

capital T or n is less than capital N and t is less than or equal to capital T the claim held.



(Refer Slide Time: 02:35)

And then we showed that C T of N is given by this recurrence relation. So, once we have

this recurrence relation we can use the induction hypothesis and substitute the claimed

quantity for each of the c terms on the right hand side therefore, we can say that this is

greater than or equal to and then substituting for the last term we have T minus 1 into x

power 1 plus 1 divided by T minus 1.

 (Refer Slide Time: 04:11)

So, that is the expression we get; if you gather some of the terms we can simplify this as;



 you would to call that e here is the base of the natural logarithm, but here these cancel

out and we are left with N. So, if you take N inside the square bracket we will have; and

when N goes into the square bracket we have and of course, minus NT.

So, we know that CT of N is greater than or equal to this. Now this is almost in the

desired form except for the contents in the square bracket here, that is we want to show

that CT of N is greater than or equal to T times N power 1 plus 1 by T by e minus N T.

Instead we have shown that it is T times N power 1 plus 1 by T minus e into this contents

in the square bracket minus NT; so, if the contents in the square bracket turn out to be

greater than or equal to 1 then we are done. So let us focus on the contents in the square

bracket and then show that that will be greater than or equal to 1.

(Refer Slide Time: 07:13)

For this we use geometric arithmetic mean inequality, which says that alpha a plus beta b

is greater than or equal to a power alpha times b power beta where alpha plus beta equal

to 1 and alpha beta a b are all non negative.
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So, let us use this and take alpha equals 1 minus 1 by T and beta equals 1 by T. And a as

x power 1 plus 1 divided by t minus 1 divided by N power 1 plus 1 by T and b as e by N

power 1 by T. So, we are applying this to the second term and the third term within the

square bracket.

So, if you apply the geometric arithmetic mean inequality to the second and the third

term you find that, these 2 terms together this greater than or equal to x power 1 plus 1

by t minus 1 which is T by T minus 1 this power that is a power alpha and then b is n e

by N power 1 by T that power beta which is 1 by T. 1 minus 1 by T is T minus 1 by T

therefore, in the exponent of x the 2 will cancel out that is T by T minus 1 and T minus 1

by t will cancel out and we will be left with x.
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Therefore this is nothing, but x divided by n power 1 minus 1 by T square that is a power

alpha and b power alpha is this. So, simplifying we get the sum of the second term and

the third term put together will be at least x e power 1 by T divided by N. But then we

know that the increasing sequence 1 plus 1 by t power t tends to e as t tends to infinity.

Which  means  the  sequence  converges  to  e  from below. In  particular  if  you  take  a

particular value of t you have 1 plus 1 by capital T power capital T is less than e or in

other words 1 plus 1 by t is less than e power 1 by T. This enables us to say that this is at

most x times 1 plus 1 by T by N.
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In other words the content within the square bracket is greater than or equal to 1 minus x

by N the power of 1 plus 1 by T which is the first term plus x by N into 1 plus 1 by T

which is the second term. Now to the first term let us apply Bernoulli’s inequality, which

says that for any alpha less than or equal to 1 and for any t greater than or equal to 1, 1

minus alpha power t is greater than or equal to 1 minus alpha t that establishes. That the

quantity within the square bracket is greater than or equal to 1 minus 1 plus 1 by t into x

by n plus 1 plus 1 by t into x by N which is equal to 1.

(Refer Slide Time: 12:53)



So, that establishes that the contents within the square bracket is greater than or equal to

1 or c T of N is greater than or equal to T into N power 1 plus 1 by T by e minus NT. So,

that establishes the claim now we say that from this claim we can derive a lower bound

for sorting n items using p processor why is that let us say we have an algorithm that

sorts n items using p processors then the cost of this algorithm is p into t the processor

time product. 

But then this parallel algorithm would have performed at most p t comparisons, which

means at least c t of n comparisons which means p t is greater than or equal to c t of n;

the algorithm must necessarily perform c t of n comparisons and it has run in a total cost

of p t therefore, p t has to be greater than or equal to c t of n.

(Refer Slide Time: 13:57)

In other words if a sorting algorithm uses p processors and runs in t time, then the cost of

the algorithm p t is greater than or equal to c t of n which is the smallest number of

comparisons  the  algorithm has  to  perform if  it  has  to  run  in  t  steps  and yet  sort  n

elements. So, p t is greater than or equal to c t of n. But then we have already claimed

that c t of n is greater than or equal to t n power 1 plus 1 by t by e minus nt.
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So, that establishes that p t is greater than or equal to t n power 1 plus 1 by t by e minus

nt dividing both sides by t we have p greater than or equal to n plus 1 n power 1 plus 1

by t by e minus n or in other words p by n plus 1 is greater than or equal to that is

dividing both sides by n and then moving the negative term to the other side we have or

n power 1 by t is less than or equal to e times p by n plus 1. 

(Refer Slide Time: 15:57)



If you take logarithm on both sides you have 1 by t times log n less than or equal to or t

is greater than or equal to log n divided by log of e times p by n plus 1, that establishes

that t is small omega of log n by log n by log of p by n plus 1.

(Refer Slide Time: 16:55)

This is the same as saying that t is omega of log of n to the base p by n plus 1. So, this is

a lower bound for sorting n items using p by n processors. So, let us try substituting some

particular values for p, in particular if p equal to n; p by n equals 1 and p by n plus 1

equal to 2 which means the lower bound is log n to the base 2.

So, that establishes that when you have n processors, you will not be able to sort faster

than log n time. So, in that sense coles merge sort is an optimal algorithm it sorts n

elements using n processors in order log n time. You cannot expect to better coles merge

sort in an asymptotic sense. If you put p equal to n by log n n log n, then p by n is log n

therefore, t would be omega log of n divided by double log of n; when you have n log n

processors you cannot expect to sort faster than log n by double log n on any of the p ram

models.
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So, in particular what we have shown is that, coles merge sort is optimal.

Now, let us begin a new topic.

(Refer Slide Time: 19:25)

The new topic that we are going to see is the problem of finding connected components

of a graph. So, we will assume an undirected and weighted undirected graph for now,

and let us say the model that we are going to use is the CRCW ARBITARY PRAM.



So, you must have all  studied the connected number problem connected components

problem in the sequential  setting and you would have seen that  this  problem can be

solved using d f s n b f s n 2 sequential setting.

(Refer Slide Time: 20:37)

So, this is a reasonably easy problem to solve in the sequential setting in particular let me

recall the problem for you. So, let us say we have given a graph G equal to V E. So,

given this graph what is necessary is to define a parent pointer for each vertex, for every

vertex we have to define a parent pointer.

So, that the vertex and its parent are in the same component and we will have one star for

every component. In other words for the first component let us say we can have a star of

this sort; what this signifies is that 1 2 3 and 4 are all in the same component. So, we

have identified this component with vertex 2, that is in a sense we are identifying that

vertices 1 2 3 and 4 all belong to the same component and we are choosing to name this

component is 2. So, 1 3 and 4 all adopt to ask their parents and here let us say 5 points to

6  and  therefore,  6  is  chosen  to  represent  this  component  and  let  us  say  the  third

component is chosen to be represented using the name of vortex 7.

So,  we  are  going  to  establish  3  components  in  the  graph  with  names  2  6  and  7

respectively  the  other  vertices  in  the  component  will  end  up  pointing  to  the

representative vertex. So, finding of connected components in the graph is essentially

defining parent pointers in the sense, every vertex ought to have a parent pointer every



vertex belonging to the same component should have the same parent and the parent of a

component  can  point  to  itself  therefore,  every  component  essentially  reduces  to  one

single star graph. So, the goal is to find a star graph for every single component in the

graph.

(Refer Slide Time: 23:21)

So, the algorithm goes like this let us say we are given G in adjacency list representation,

which means we have an array of vertices and for each vertex we have an adjacency list,

which you can assume as doubly linked. So, such a representation is the adjacency list

representation of the graph. So, let us assume that we have enough processors to occupy

all the data values. We assume that we have 1 processor per vertex and 1 processor per

adjacency list entry. 

So, this is as good as assuming you that you have n plus 2 m processors, but since the

model  is  self  simulating  we can  simplify  this  into assuming that  we have n plus  m

processors. So, when we say we have n plus m processors that is as good as saying that

we have one processor for every single data element of the graph.
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Now, the algorithm begins with initialization which we call step zero. In the zeroth step

what we do is this for every v we define the parent pointer as pointing to itself the parent

does one self for every vertex. So, this is the zeroth step and then in step 1 we have

several iterations.

(Refer Slide Time: 25:27)

So, step 1 is essentially a loop, here we repeat the following steps; in step 1 1 for every

edge u v every directed edge u v we assume that the graph consists of undirected edges,

but then each undirected edge can be visualized as 2 directed edges 1 in each direction,



which means in the adjacency list we assume we have 1 entry corresponding to edge u v

and another entry corresponding to edge v u which are the twins of each other.

So, for each adjacency list entry there is now I am visualizing the graph as a directed

graph. So, for each directed edge u v belonging to E we do in parallel. If u belongs to a

star in a moment I will show you how to check if u belongs to a star or not; if p of u less

than p of v p of p of u equal to p of v.

(Refer Slide Time: 27:05)

So, that is what we do in step 1 1 and then in step 1 2. For every u belonging to v we set

p of u as p of p of v this is 1 step of pointer jumping exactly as we did in the case of list

ranking. So, these are the 2 steps of the loop, we continue doing this until for every

directed edge u v p of u is the same as p of v.

So, that is what the algorithm is, but we have to explain some things now the parent

pointers.
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 The invariant of the algorithm is that every vertex has a parent pointer. Initially for all v

we set that p of v equal to v. So, initially we have a set of vertices of this form, but we

shall  show that  as we go along,  we will  have the parent  pointers  defining a trick,  a

collection of trees a forest in particular. Each tree of the forest will be of this form every

node in a tree will have an out degree of 1 and all nodes other than the root will be

pointing to a node other than itself the root will be pointing to itself.

So, this establishes that every single node in the graph in the graph defined by the parent

pointers, the out degree of every single vertex is 1 the every vertex has got a unique

parent. So, this we shall establish that the parent pointers will always define a forest in

this sense. Our idea is that finally, when the algorithm ends the there should be 1 forest

corresponding to every single component.



(Refer Slide Time: 29:29)

What we define as a star graph is a tree of 2 levels. It has 1 root and the root has several

children, all of them pointing to the root itself and then there are no grandchildren the

tree has only 2 levels the root is at the first level and the children are at the second level.

So, there are only 2 levels a star graph is a tree of exactly 2 levels.

So, what we want is that when the algorithm terminates, every tree in the forest must be a

star graph and there should be 1 forest 1 tree corresponding to every single connected

component in the forest.

(Refer Slide Time: 30:23)



Now, the question comes. If you have one processor per vertex, detect if it belongs to a

star graph. This is a condition that we have to check within the algorithm, here we check

whether u belongs to a star or not. So, we should be able to check whether a vertex u

belongs to a star graph or not, but remember we are doing this on an ARBITARY CRCW

PRAM. This is done like this checking for the star property is done like this.

(Refer Slide Time: 31:19)

Assuming that we have one vertex one processor per vertex let every vertex in the star

graph discover its parent and the grandparent.

So, for vertex v we take the parent and the grandparent. If the parent and the grandparent

are not the same vertex, then v is neither the root nor a child of the root that is because

the root points to itself, the parent of a root is itself now consider a child of the root. So,

let r be the root and let x be this vertex now the parent of x is r and the grandparent of x

is also r.

So, for every child of r the parent is r and the grandparent is also r, but here we are

explicitly checking whether p of v is not the same as p of p of v. So, this condition is

satisfied only if v is neither the root nor a child of the root, which means we does not

belong to a star graph. So, for every vertex if this condition is satisfied, v is not in a star

graph. So, it is easy to check for all vertices that are neither roots nor children of roots.

So, this can be established in order of one time.



So, once this is done, every vertex other than the roots and children of roots know that

they are not in star graphs. Now the roots and the children of the roots have to find out

for themselves this can be done easily.

(Refer Slide Time: 33:25)

If v is not in a star then we has a grandparent which is not the same as v; inform the

grandparent of v that it is not in a star. Every v now informs its every v that has found out

that it is not in a star informs its grandparent that it is not in a star too.

Now, if a tree has more than two levels, then the root certainly has grandchildren those

grandchildren will now come and tell the root that it is not in a star. So, those roots which

are of trees that are not stars, now know that they are not roots of stars. And by omission

all the other roots now know that they are roots of stars. For example, if a node has no

grandchild and in this step it was expecting a grandchild to come and inform it that it is

not in a star.

But  no  grandchild  comes,  at  that  point  that  vertex  knows  that  it  does  not  have  a

grandchild which means it is a node of the star. So, all vertices all roots of stars have now

identified themselves correctly, and all roots of non stars also have identified themselves

correctly.  And  once  the  information  is  available  with  the  parent  the  children  can

immediately see. So, in the next step every vertex v will go and check whether its parent

belongs to a star or not. Now if a vertex is a child of a root it can check at the root now

and discover that it belongs to the star or not.



 If v is a child of a root check with the parent; so, we have a 3 step process to check

whether a vertex belongs to star or not. Once these 3 steps are executed we would have

informed every single vertex as to whether it  belongs to a star or not. The first step

applies  to  every  vertex  every  vertex  checks  that  its  parent  and  the  grandparent  are

different.

If these 2 are different certainly v is not in a star graph is not in a star graph. So, every

vertex that is a grandchild now has found out that it is in a star graph, the other vertices

are still non committal they do not know. So, if this condition does not satisfy then the

vertex still does not know then it goes on to the second step and then if a vertex has

found that it is not in a star graph which means if it is a grandchild.

So, in the second step every grandchild is active. So, every grandchild will go and inform

its grandparent that you are not in a star graph too. So, every grandparent does now be

found out that it is not in a star graph. In particular every root which is a grandparent has

found out that it is not in a star graph and by omission every root that is in a star graph

also has found out that it is in a star graph.

Now, all that remains is to inform the vertices which are children of the roots. So, if a

vertex is a child of a root that is easy to check, your parent and the grandparent are the

same then you are a child of a root and your parent is different from yourself in that case

you are a child of a root. Then all you have to do is to check with your parent the parent

already knows, the parent has a root it already knows whether it is in a star of not. So,

you only have to copy the information from the parent.

So, in 3 steps we have informed every single vertex of the graph as to whether it belongs

to a star or not. Now we come to the description of the algorithm. In step 1 what we do

is, this for every u which belongs to a star we perform what is called hooking. Step 1 1

can be called the hooking step and in step 2 we do a 1 round of pointer jumping this is

called contracting.

So, the algorithm proceeds repeatedly hooking and contracting. So, what exactly do we

do here?.
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In step 1 1, we execute if u belongs to a star. So, u belongs to this star let us say u could

be either the root or 1 of the children then. So, we are doing this for every single edge of

the graph. So, consider some edge u v of the graph where u belongs to a star. So, u may

be one of these vertices let us take this as u and we are considering an edge in the graph,

the dotted line represents a real edge in the graph whereas, a thick line represents a

parent pointer. So, this is an edge in the graph. So, what we do is this, u belongs to a star

and that is why this edge gets to execute step 1 1.

So, in step 1 1 we check whether the parent of u, this is the parent of u and this is the

parent of v we check if the parent of v has a number that is smaller than the number of

parent of u. If that is the case, we make the we make p of u right now p of u is pointing to

itself right now p of u is pointing to itself this we remove and then make p of v the parent

of p of u. So, this star ends up being a part of this tree why do we do this? At present in

the algorithm we have 2 components defined by the parent pointers, that is u belongs to 1

component and v belongs to another component. Now u is in a star which means this tree

cannot be contracted any further using pointer jumping.

So, this component to which u belongs to this component in the graph defined by the

parent pointers, u has come to a point of stagnation. This component cannot shrink any

further. But then we find that there is an edge u v in the graph which connects this star

graph this 2 level tree to another 2 level tree. Therefore, we attempt to hook these 2 trees



together that is because in the final reckoning, all these vertices should be in one single

component and therefore, in one single star graph therefore, what we are attempting to

do here is legitimate. But then there could be several such attempts we are doing this for

every single edge u v in step 1 1 we do this for every single edge u v.

So, when we consider these 2 trees, the tree to which u belongs and the tree to which v

belongs, there could be multiple edges going between these 2 trees; since the model that

we are using is the c r c w arbitrary p ram.

When multiple processors attempt to hook these 2 trees together exactly one of them will

succeed. That is multiple processors might be attempting to reset the value of p of p of u,

but exactly  one of them will  succeed. For example,  it  could be that  there is another

vertex v prime, which does the same thing; v prime attempts to hook p of u to p of v

prime that is because we have an edge u v prime 2 in the graph.

So, there is one processor sitting on u v prime and another processor sitting on u v both

the processors recognize that p of u is less than p of v and p of v prime therefore, both

the hooking are valid. Therefore, the first processor will attempt to reset p of u as p of v

whereas, the second processor will attempt to reset p of u as p of v prime exactly one of

these attempts will succeed on the arbitrary model.

It does not really matter which one succeeds, either way we will be hooking this star to

another tree. Now there could be another edge going out of u into some other component

into some other tree which will attempt to hook the star to that particular tree. So, once

again it does not really matter which of these attempts succeed whichever succeeds will

ensure that the star graph is hooked to one of the existing trees. So, this is a way of

coalescing multiple trees into one single tree.

And then after doing this, we will reduce the height of the trees by one step of pointer

jumping. That is every node will now adopt the grandparent of that node as its parent.

When  you  apply  pointer  jumping  to  a  star  graph  nothing  changes,  the  star  graph

continues to remain the same star graph. Therefore, you can perform a pointer jumping

for every single vertex without concern about the star graphs ruining themselves.
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So, that is what the algorithm is. So, the correctness of the algorithm is easy to see. The

correctness  depends on the fact  that  no cycle  is  formed in the hooking step.  This is

because for all v p of v is always less than v or less than or equal to v. Initially p of b is

the same as v and whenever hooking happens in the first  step we will  be hooking a

vertex to a smaller vertex.

For example let us say you have an edge from u to v real edge in the graph, the processor

sitting on this edge looks at p of u and p of v it finds that p of u is larger than p of v and

therefore, it ends up hooking u to v. So, now, this parent pointer that is defined is from a

larger numbered vertex to a smaller numbered vertex and this is true for every single

pointer that is defined in the first step.

Therefore the parent pointer graph that we get after the first step is 1 where every vertex

is pointing to a smaller numbered vertex, then no cycle can be formed. And the pointer

jumping will  not  violate  this  condition  every  node is  adopting  its  grandparent  as  its

parent.  The  parent  is  smaller  than  v  and  the  grandparent  is  smaller  than  the  parent

therefore, the grandparent is smaller than the vertex itself therefore, pointer jumping will

not violate this condition.

So, this condition is satisfied at the end of the first iteration and then it will be satisfied in

the further iterations.



(Refer Slide Time: 46:01)

For example, in step 1 1 what we do is this, we set p of p of v p of p of u as p of v for all

u v such that you is in a star graph and p of u is greater than p of v.

Now, the new pointer being defined here is this, the pointer is from p of u to p of v. So,

we explicitly check that p of u is greater than p of v therefore, the new pointer that is

being  defined  is  from a  larger  node  to  a  smaller  node.  Therefore,  this  condition  is

maintained by every single pointer that is defined in step 1 1 whenever you change the

parent, you ensure that the new parent is smaller than the vertex itself. So, this invariant

is always maintained therefore, the p graph the graph defined by the p pointers is always

a forest therefore, pointer jumping defined on this is a valid operation.
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It reduces the height of the tree and when the tree becomes a star graph finally, it will

hook once again.

So, the correctness of the algorithm follows from this, that is if you keep doing this

eventually all the fragmented trees that we had from 1 single component at the end of the

first iteration will end up hooking to each other and eventually all of them will contract

into 1 single star graph. So, if you imagine how the 1 single component operates you will

get to see that the algorithm operates correctly. 

Initially every vertex is pointing to itself; then at the end of the first step the vertices are

hooking up somehow, but  every hookup is  guided by 1 single edge therefore,  every

vertex  is  hooking  to  some  of  its  neighbors.  But  then  if  you  look  at  one  particular

component, you find that it might have several trees within this component, then these

trees coalesce as steps go by whenever a tree shrinks to a star graph it will hook again.

But the hooking again will be directed by one real edge of the graph. Therefore, it will be

hooking to another tree belonging to the same component. So, trees are now coalescing

in this fashion and then once the trees coalesce we allow them to shortcut. So, we will

continue this operation until every vertex has belong to a star graph now we have to

estimate the running time.
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The running time can be estimated by looking at the total  height of all  the trees put

together.

(Refer Slide Time: 49:47)

.

Initially when the vertices hook to form a collection of trees, the total height is less than

or equal to n minus 1. This is because the worst that can happen is trees hooking up in

this fashion.



If the tree if the nodes hook up in this fashion, we have a tree of a single tree of height n

minus 1 therefore, the total height of all the trees put together is n minus 1 itself. The

degenerate cases where the nodes pair off in this fashion, in this case the total height of

all the trees put together is n by 2. So, either way we can see that the total height of all

the trees put together is even more degenerate is a single star graph, it could be that all

vertices belong to the same component and one single star graph is formed in 1 go in the

beginning.
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Therefore, we can say that the total weight of all the trees put together that are formed in

the beginning is  n minus 1 and then we claim that  in  each iteration the total  height

reduces by 3 by 2 by at least 3 by 2 by a fraction which is at least 3 by 2.
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Why is this? First consider the hooking step; in the hooking step we have a star graph of

height 1 hooking to a tree of let us say height h. The total height of these 2 trees put

together  is  h  plus  1  in  the  beginning  before  the  hooking.  Now  let  us  say  we  are

considering some u here u could be either the root or a leaf here, and we consider a v

which happens to be a leaf of this tree.

Therefore the hooking happens this way, the parent of u is hooking to the parent of v. So,

this tree the tree of height 1 ends up hanging as a child of the parent of v. So, this is how

the tree is going to be hung therefore, the total height of the new tree is going to be h plus

1. Now this tree has vanished it has become a part of the bigger tree which has a height

of h plus 1 therefore, hooking preserves the total height in this case.

But in case the tree is hooking to some other node inside further inside this bigger tree,

then the height of the bigger tree will not increase because of this hooking. And it could

be that several stars are hooking to this 1 tree therefore, we can say that hooking will not

increase the total height of all the trees put together it might decrease the total weight of

all the trees put together.

But it can never increase the total weight of all the trees put together; therefore; the total

height in the worst case remains the same when we hook.
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When we come to the contract step, this is a pointer jumping case. So, let us consider the

individual trees of course, since we are considering pointer jumping we might as well

consider linked lists. So, in this case when you have a linked list of 5 nodes for example,

there  are  5  nodes  therefore,  the  height  is  4  when  we perform pointer  jumping  1  is

pointing to itself which is the root.

So, 1 will continue to point to itself 2 will continue to point to 1, 4 will point to 2, now 4

has a depth of 2 3 will point to 1 and 5 will point to 3. So, you find that the height has

now reduced to 2. So, if you take the ratio of the old height to the new height, you find

that this 2 which means in the contract step whenever we are considering a tree of even

height, the height reduces by a factor of 2. For all trees of even height the height reduces

by a factor of 2.
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If you consider a tree of odd height, where 1 points to itself you find that the point is

flow like this 6 becomes a child of 4, 4 becomes a child of 2, 5 becomes a child of 3,

which becomes a child of one.1.

So, here we had a height of 5 whereas, here we have a height of 3 the new height is 3.

So, the old height divided by the new height in this case is 5 by 3. In general if you take a

tree of height 2 n minus 1, the new height is going to be n or in other words the ratio is

going to be 2 n minus 1 divided by n. This is maximized when n equal to 2. When n

equal to 2 the ratio becomes 3 by 2 for this is the minimum the ratio the least ratio is 3 by

2 for any other value of n we have a better ratio. 
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So, for the worst that can happen is that the total height reduces by a factor of 3 by 2 in

every iteration. The total height that we are beginning with of less than or equal to n

minus 1 and finally, we will have a height of 1 for every single star graph, that is we will

have 1 star for each component therefore, the total height for each component is going to

be at most 1.

So, this establishes that the total time required to reduce the height were constant or to

the least possible is log n to the base 3 by 2, which is order of log n.
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So, what we have established is that, connected components can be found in order of log

n time using n plus m processors, where m is the number of edges and v n is the number

of vertices on a CRCW ARBITRARY PRAM. In the next lecture we will try to solve the

same problem on a CRCW PRAM. So, that is it from this lecture hope to see you in the

next lecture.

Thank you.


