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Welcome  to  the  12th  lecture  of  the  MOOC on Parallel  Algorithms.  In  the  previous

lecture we studied about the bitonic sort based merger and the sorter obtained from that

this merger dependent on bitonic sorter network. A bitonic sorter is a network which

takes a bitonic sequence as an input and produces a sorted permutation of that. So, a

bitonic sorter works in this fashion. When a bitonic sequence is given to it is as an input

it  compares  every  element  of  the  sequence  with  its  diametrically  opposite  element

simultaneously.

And as a result of this comparison the there is an exchange performed if necessary. So,

that the smaller of a pair of elements will always be in the first half and the larger will be

in the second half at the diametrically opposite position. Once this is done we claimed

the input will divide into 2 bitonic sequences.

So, that the top half every element in the top half is smaller than every element in the

bottom half. If this is the case then the algorithm can proceed with the top half and the

bottom half independently sorting them in place and the result will be a sorted output.

So, on the basis of this assumption we designed a network for sorting bitonic sequences

then we went on to design a merger. The merger dependent on the fact that given 2 sorted

arrays when the second array is inverted and pasted onto the first array what we get is a

bitonic sequence.

And then merging the 2 arrays reduces to the problem of sorting the bitonic sequences

and then based on the merger we designed merge sort  algorithm which works in the

conventional way given a set of elements to sort, we divide it into 2 equal halves we sort

each half recursively and then we merge the 2 halves using a bitonic sort merger. So, this

was  our  algorithm,  but  the  correctness  of  the  algorithm  crucially  dependent  on  the

bitonic sort of working correctly. 



So, let us now prove that the bitonic sort works correctly. So, let us consider a bitonic

sequence.
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This is a bitonic sequence of length n. So, this sequence has a trough and a peak. Let us

say for i varying from 0 to n by 2 minus 1 we define a i as the smaller of the 2 elements x

i  and x i  plus n by 2.  If  we keep the elements  circularly then the element  which is

diametrically opposite to x i is x i plus n by 2. So, the smaller of x i and its diametrically

opposite element will form a i, the larger of them will form b i. So, once a is and b i’s are

defined in this fashion we want to claim that the sequences 0 through a n by 2 minus 1

and b 0 through b n by 2 minus 1 are both bitonic. Moreover, for all i j a i is less than or

equal to b j which means every element of the a sequence is smaller than every element

of the b sequence is what we want to clime if this claim is true then the circuit that we

designed in the last class turns out to be a correct one.

So, let us now attempt to prove this.
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So, to prove this we assume that the trough is at 0. This is only a temporary assumption

later on we will generalize this. So, for now we will assume that the trough happens to be

at 0, then we have inequalities of the sort the peak happens at capital M. In other words if

you look at the sequence it will look like this. It will be either this or the mirror image of

this

So, let us make that assumption 2. Let us assume that M is greater than or equal to n by 2

that is the peak happens to the right of the midpoint. But this assumption is without loss

of generality because if this is not the case all that, we have to do is to take the mirror

image of our arguments just look at the argument from right the right to let the left. So,

let us consider the elements ranging from a 0 through a M minus n by 2 and b 0 through

b M minus n by 2; a 0 happens to be the smaller of the 2 elements x 0 and x n by 2.

So, x 0 happens here and x n by 2 happens here. Clearly x 0 is smaller than x n by 2

therefore, a 0 is x 0 and if you look at the right element in this range, the right element is

happens to be x M minus n by 2 and its diametrically opposite element is x M. Since, x

M is the peak of the sequence x M is greater than x M minus n by 2.

Therefore the smaller of these 2 would be x M minus n by 2 which happens to be a M

minus n by 2. Then b 0 is x n by 2 and b M minus n by 2 is x M. If you mark them on

this diagram I have to find a point n by 2 positions away from M then these elements are

a 0 through a M minus n by 2 whereas, these elements are b 0 through b M minus n by 2.



So, clearly we can see that the a 0 through a M minus n by 2 elements are all smaller

than b 0 through b M minus n by 2 elements. In particular we also know that e 0 is less

than a 1 which is less than a 2 which is less than and so on; this is how the inequalities

go. From the diagram it is also clear that b 0 is the smallest of the other sequence. 

So, we have established these inequalities. Mind you our goal is to show that the a’s and

the b’s form bitonic sequences  which means we have to look at  the a’s and b’s and

establish that there are exactly 2 tones in them. So, we have done part of the job that is

we have shown that the sequence from 0 to M minus n by 2 in both cases have exactly 1

tone.
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Then continuing further let us compare elements x M minus n by 2 to x n by 2 on the one

hand and x M through x n minus 1 through x 0 on the other hand. So, for symmetry let

me write like this. The diametrically the diametrically opposite position for x n by 2 is x

naught and the diametrically opposite element for x n by 2 minus 1 is x n minus 1. 

So, let us compare these 2 sub sequences. We find that x M minus n by 2 is less than x M

x M is the peak. So, clearly this is the case whereas, x n by 2 is greater than x naught that

is because x naught is the trough. Therefore, when you compare these 2 sequences what

we find is that they cross over; x M minus n by 2 is smaller than x M whereas, x n by 2 is

larger than x naught. So, at some point these 2 sequences must cross over. In this figure



we are considering this part and this part; these are the 2 sequences we are comparing

now.

So, we can clearly see that these are crossing over because the leftmost point of the left

part which is this part, the position at M minus n by 2 is smaller than x M where is the

right  point  which  is  at  x  n  by  2  that  is  greater  than  x  naught;  n  is  the  same as  0.

Therefore, these 2 must be crossing over at some point. Let us say the crossover happens

at k. Therefore, what we find is that there x is k, so that x M minus n by 2 increases all

the way to x k and then we have x k plus 1 continuing all the way to x n by 2 whereas, on

the other hand we have x n which is greater than all these elements yeah.

So, as the diagram shows x M through x 0 is a decreasing sequence and x M minus n by

2 2 x n by 2 is an increasing sequence. But then what we know is that there is a crossover

point somewhere between x M minus n by 2 to x n by 2. So,  for that  value of k a

crossover happens so that for every a for the elements to the left of the cross over the

upper sequence is smaller whereas, for the elements to the right of the crossover the

lower sequence is smaller. So, we have written this sequence on the lower side. So, what

we know is that here x M 2 the crossover point is larger. So, I can denote it in this

fashion whereas, from here onwards it is the other way round.

Since,  the  elements  that  are  returned  against  each  other  are  diametrically  opposite

elements of each other what it transpires that x M is the b of x M minus n by 2 and x M

that is out of these 2 elements. The b happens to be x M and the a happens to be x M

minus n by 2 or in other words the elements on the upper side are all a’s and the elements

on the lower side are all b’s on the side of the divider. On the other side of the divide it is

just the other way around these are all b’s and these are all a’s.
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What that means,  is that we have these inequalities that we established earlier. Now,

further on we can go on to argue that up to a k we have an increasing sequence then we

do not know the relationship between a k and a k plus 1. We have these inequalities

similarly we also have these inequalities. The square and the circle represent inequalities

that  we  do  not  know  yet.  So,  as  you  can  see  these  directly  follow  from  what  we

concluded in the previous slide, we have as on this side and as on this side. So, the x M

minus n by 2 through x case are all increasing values of a’s and then x k plus n by 2 plus

1 through x naught or all decreasing values of a’s; similarly, for the b sequence.

So, the square and the circle are dependent on the inputs, but then here if we see that the

a sequence peaks at either a k or a k plus 1. One of this is the peak of the a sequence.

Similarly b k or b k plus 1 is the trough of the b sequence. The peak of the b sequence

happens to be b 0 and the trough of the a sequence happens to be a 0 which means both a

and b are bitonic sequences which is partly what we wanted to show. In addition to this

we also wanted to  show that  every element  of the a  sequence is  smaller  than  every

element of the b i sequence. To this all we have to show is that the peak of the a i

sequence is smaller than the trough of the bi sequence. 

So, the peak of this a sequence is either a k or a k plus 1, we do not know which, but then

from what we saw in the previous case if it is a k then a k happens to be less than b k

which happens to be either greater or less than b k plus 1 which we do not know, but



either way the trough of bi is b k or b k plus 1. So, what we establishes that the peak of

the a sequence is certainly less than the trough of the b sequence. So, that establishes the

result except in that the division line that we have used passes through the trough. 
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That is we prove the theorem assuming that the circulars divided through the trough that

is 0 happens to be the trough is the assumption we made and if we move in this fashion

we assumed the peak happens to be somewhere after the midpoint.

Now, if we do not want to make this assumption all that we have to do is to take another

line. In that case all that happens is that 2 sectors will swap their positions. They are

diametrically opposite to each other. So, every element on this sector will be moving to

the other sector and every element on the other sector will be moving on to the sector

except for that the sequence continues to be bitonic that is because a cyclic shift of a

bitonic sequence is bitonic again.

So, this establishes that bitonicity is maintained even if you change the division line. So,

it is not really necessary that the division line passes through the trough even if it does

not pass through the trough the bitonicity will be maintained. So, that establishes the

correctness of our bitonic sort algorithm, now that is the correctness. 
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Now, let us go on to do the analysis of the bitonic sort algorithm. First let us consider the

cost of merging 2 arrays of size n each. This we find that is governed by this recurrence

relation because when we are given 2 arrays to be merged what we do is to twist the

lower array pastes them back to back to form a bionic sequence and then we sort the

bitonic sequence. 

In the bionic sequence what we do is to compare every element with the diametrically

opposite element. These comparisons can be performed in order one time, just one single

comparison  all  of  them  executing  simultaneously.  So,  once  these  comparisons  are

performed then what remains is to merge the 2 remaining half that is 2 bitonicity do

bitonic sort on the 2 bitonicity sequences that we get which is identical to merging 2

arrays of size n by 2 each. Therefore, the recurrence relation that we get is this which is

identical to the recurrence relation that we got for the odd even merge.

Therefore we will have an identical solution. The running time of the bitonic sort merger

is also log n plus 1 and the running time of the sorting algorithm again will be identical

because we are essentially using the same sorting algorithm; given n items to sort we

divide it into 2 halves of n size n by 2 each. We sort each half recursively. Since these

recursive invocations are simultaneous we have to count the time only once and then we

merge the 2 sequences. This is T of M, but T of M n by 2 n by 2 is log n by 2 plus 1. 



Therefore,  we will get an identical expression as we got in the case of the odd even

merge sort which is order of log squared n. So, bitonic sort merge sort also runs in order

of log square n time, but the cost is bound to be different.
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First consider the cost of the merge circuit. The cost of the merge circuit can be written

like  this.  Every  element  is  compared  with  the  diametrically  opposite  element  and

exchanged and then after that we are left with 2 bitonic sequences each bitonic sequence

has to be sorted. So, the cost of the bitonic sorter will come in the cost of the bitonic

sorter of size n is the same as the cost of merging 2 sequences of size n by 2 n by 2

because the 2 are computationally the same.

So, the cost is twice here. We have to count the cost of both the recursive calls and then

the additive term in this case happens to be n whereas, in the case of the odd even merge

sort it was n minus 1. So, I will leave this recurrence relation for you to solve as an

exercise,  I will  just  give you the final solution.  You can find that the final I answer

happens to be n log n plus n which is more than the cost of the odd even merge sort, odd

even merge network. So, this is the cost of merging using the bitonic sort merger. Then

the cost of the bionic sort merge sorter can be expressed in this fashion; given an array of

size n we divide it into 2 equal halves we sort each half.

So, we have to count the cost of each recursive call that plus the cost of merging the 2

arrays. So, here again I will give you the final expression. I leave the recurrence relation



for you to solve. So, this is order of n log square n this is order of n log n. So, what we

establishes that the bitonic sort merge sorter runs in order of log square n time at order of

n log square and cost exactly as in the case of the odd even merge sorter.

So, both these algorithms have the same asymptotic complexity, both of them run in

order of log squared n time at order of n log squared n cost even though both of them use

drastically different algorithms.
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Then of course, naturally you would ask can we achieve a faster algorithm. These 2

networks that you have just seen are very old networks. These algorithms were invented

in the 1950’s. Then after nearly 30 years was invented the AKS sorting network which

has a complexity of order of log n and a cost of order of n log n which happens to be an

optimal algorithm even on an EREW PRAM. But the only downside is that the constant

factor  hidden  here  happens  to  be  very  large.  Therefore,  this  is  not  a  very  practical

network, but it is not within the scope of this course to discuss AKS sorting network.

So,  that  was  about  sorting  on  comparator  networks.  Now  we  move  on  to  another

algorithm. This algorithm we will use is a precursor to an optimally strangling algorithm

which we shall study in the subsequent lectures.
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So,  today we are  going to  discuss  an  optimal  algorithm for  list  colouring.  We have

already studied an algorithm for list colouring an algorithm that colours a list in order of

log star n time using 3 colours, but this algorithm is not optimal that is because it uses n

processors, this is the algorithm we have now. 

Let  us see if we can get an optimal  algorithm out of this;  log star n is  a very slow

growing function. So, as we discussed before even for very large values of n log star n is

practically a constant. But then still technically speaking this is not an optimal algorithm

because the cost of this algorithm is n times log star n as n tends to infinity this grows

super linearly with n. Therefore, we want an algorithm with a cost of order n. So, we will

device an algorithm that runs in order of log k n time for a constant k using n by log k n

processors. 
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So, the first step of the algorithm is to colour the list using log k n colours. We can

achieve  this  using  our  symmetry  breaking  algorithm.  In  the  symmetry  breaking

algorithm we assume that every vertex has a processor and then the processors looked at

the colour of the vertex on which it stands as well as the colour of the vertex neighboring

vertex  and then  using these 2 colors  invented  new colour  for  their  vertices  and this

iteration was continued for several steps. So, we established that each of these iterations

executes in order of 1 time. So, we will execute some of these iterations.

So, let us say we run this algorithm for k steps, we run the symmetry breaking for k

steps. So, after k steps we will be left with a log k n colouring or if you wish we can go

for k plus 1 steps because since we add 1 bit at the end of every step the number of steps

required to get a log k n colouring is not k, but k plus 1. So, after k plus 1 steps we will

have a log k n colouring of the list.

So, we do this using n processors and we have taken k plus 1 steps where k is a constant.

So, the total cost is order of n since k is a cost constant. If you have only n by log k n

processors, we would take order of k times log k n steps for this. Since, k is a constant

this is the same as order of log k n time.

So, in order of log k n time, we managed to find this colouring, but our goal is to finally,

3 colour the list, but right now we have a log k n colouring. So, we have to convert this

log k n colouring into a 3 colouring. So, in the second step what we do is this.
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The list is given in an array. As we discussed earlier the list has a physical representation,

the list is given in an array, but the physical representation does not need to have any

relation to the logical representation. The physical representation is the order in which

the vertices are given in the array.

So,  we  have  an  array  of  this  form  let  us  say.  We can  visualize  this  array  as  a  2

dimensional array. This 2 dimensional array that we are visualizing will have n by log k

n columns and log k n rows. So, in this array of size n we can assume that the first n by

log k n elements will form the first row then the remaining n by log k n. The next n by

log  k  n  elements  will  form  the  second  row  and  so  on  we  assume  a  row  major

representation. 

So, we visualize a 2 dimensional array in this manner. So, henceforth let us look at the

array as a 2 dimensional array. The 2 dimensional array has log k n rows and n by log k n

columns. So, this is a fat array with only a small number of rows. So, this is the fat short

array and then what we do is this. Let us depute one processor to each column. Each

column has the size of log k n we depute one processor to each column. We can do this

because  we  have  enough  processors  we  have  n  by  log  k  n  processors.  What  these

processors  do  is  to  start  the  vertices  in  the  column  using  radix  sort.  We have  one

processor per column and the number of elements in the column is log k n. So, if we use



radix sort we can use radix sort because we are sorting on the colours and the colours are

integers in the range 0 to log k n minus 1.

So, we can use radix sort to sort the vertices on their colours. So, that the vertices with

the smallest colour will appear at the top and the vertices with the larger colours will

appear at the bottom. While sorting we make sure that the logical structure of the list is

intact. The logical structure of the list is defined by the pointers. Therefore, we have to

redefine  the  pointers  appropriately.  So,  for  i  node  the  logical  connections  are  the

incoming pointer as well as the outgoing pointer. So, what we do is this every vertex

remembers its current position and then once we have sorted the columns every vertex

will also know its new position within the same column, a vertex may move up or down

in the column. 

So, now it knows its new position within the same column. Then it goes back to its

original position and there it checks the new positions of its existing neighbors. So, the

neighbors will have found their new positions within their respective columns now. So,

all that the vertex has to do is to look at the neighbors and find their new positions. So,

now, the vertex knows the new positions of its neighbors. So, now, the vertex will go and

occupy its new position.

So, now everybody is in place in their new positions with the knowledge of the new

positions of their neighbors which means, we have now sorted the vertices while keeping

the logical structure of the list in duct and then in the third step we handle what we called

the inter row vertices.
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We say that a vertex is an inter row vertex if it  either has an incoming pointer from

another row or an outgoing pointer into another rho. In these 2 cases we term the vertices

inter row vertices, any vertex which is not an inter row vertex is an inter row vertices, we

will handle these later. So, at the moment we are going to handle the inter row vertices. 

Let us assume that the colours that we used in the first step ranged from 4 to log k n plus

3. Our final goal is to colour the list with colours 1 2 3. We do not want the colour ranges

to interfere with each other. Therefore, we will assume that the colours that we used in

the first step are in the range 4 to log k n plus 3. So, now, we consider the inter row

vertices of row 0 which is the topmost 0 topmost row. So, we consider the inter row

vertices of row 0. First let me consider all the inter row vertices in row 0 that has an

incoming edge from another row. 

Now, no 2 of these can be adjacent to each other that is because their incoming edges are

from another row. So, they will form an independent set. So, we have one processor in

each  column  and  since  we  are  considering  row 0,  let  us  assume that  we  have  one

processor stationed on all these vertices. So, out of the row 0 vertices we are making up

the vertices that has an incoming edge from another row these vertices will  form an

independent set.

So, let us say these vertices are woken up, we have a processor sitting on them. What the

processor does is this it looks at the neighborhood of these vertices and if the and will



adopt for this vertex the least colour that is not in the neighborhood. At the moment these

vertices are coloured in the then in the third step we handle what we called the inter row

vertices using colours in the range 4 to log k n plus 3. So, none of this legally coloured

because a legal colour is 1 2 or 3.

So,  for  all  these  vertices  the  processors  will  adopt  the  least  colour  not  in  their

neighborhoods. And then we will consider all row 0 vertices with point as going to other

rows they will again from an independent set no 2 of them can be adjacent because they

are outgoing pointers are all 2 different rows.

Now, these nodes are brought up alive and the processes sitting on them will recolour

them with valid colours which establishes that every endure row vertex of row 0 has

been validly coloured. Then we move on to row 1 where we do the same thing and so on.

So, at each row we will be spending order of one time. Therefore, in a total of order of

log k n time, we will manage to validly colour every inter row vertex in the list when do

we have a 2 dimensional array and we are going down the columns using one processor

per column. 

So, once the processes hit the bottom we would have properly coloured every inter row

vertex. Now we bring all the processors back up and station them in the topmost row

again.
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Now, the processors are back here they are all in the topmost row which is row 0. Now

we have to handle the intra row vertices. Several intra row vertices could be adjacent to

each other which means it could be that we have connections of the sort. We could have

several intra row vertices of row 0 connected up like this. What we do is this. In the first

step, we bring alive all vertices in row 0 that are of colour 4; color 4 is the least invalid

color.  So,  all  vertices  of  colour  4  and  row 0  are  brought  alive.  They  will  form an

independent set because no 2 vertices of colour 4 can be adjacent to each other. 

Therefore, all these vertices can be given a valid colour in order one time. All that the

processors sitting on them have to do is to look around in the neighbors in neighborhood.

There are 2 neighbors at the most and adopt for the vertex the least valid colour not in

the neighborhood there is always 1 such least colour. So, every colour 4 vertex in row 0

is now coloured, validly coloured. Then in the second step we bring alive all vertices in

row 0 with colour 5 and row 1 with colour 4 which means in step 2 the sum of the row

number and the colour should be 5 whereas, in step 1 the sum of the row number and the

colour should be 4. So, here we have brought up all these vertices alive. 

So, here we have some vertices of colour 5 in row 0 and we also consider some vertices

of colour 4 in row 1, but then these are all intra row vertices which means for all these

vertices  the  neighbors  are  from the  same row. Therefore,  there  cannot  be  a  conflict

between a row 0 vertex and a row 1 vertex and the row 0 what vertices are all of colour

5. So, they will form an independent set and the row 1 vertices are all of colour 4.

And they will also form an independent set and we have a guarantee that the 2 sets will

not conflict with each other. Therefore, together they will form an independent set and

we can recolour all of them with valid colours. Then in step 3 we will bring alive all

vertices in row 0 with colour 6, in row 1 with colour 5, in row 2 with colour 4 and so on.

So, if you continue like this you will require 2 times log k n minus 1 steps before we

finish all the vertices. 

So, I pose a question to you, how do you show that the total number of steps required is

twice log k n minus 1? So, figure it out yourself. But the logic used is this in the first step

we consider all vertices where the row number plus the colour is 4. In the second step we

consider all vertices where the row plus colour value is 5; in the third step we consider

all vertices where the row plus colour values 6 and so on. And this can be at most how



much? The maximum row number which is log k n minus 1 and the maximum colour

value which is log k n plus 3. So, that is the maximum row plus color value. So, if you

imagine where we started from then you can easily figure out that the total number of

steps required is twice log k n minus 1 steps. 

So, by the end of the, these steps the list would be properly 3 colour.
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So, what we have found is that we can 3 color link list in order of log k n time using n by

log k n processors on an EREW PRAM. This is an optimal algorithm because the cost of

this  algorithm is  order  of  n  which  is  exactly  the  cost  of  a  sequential  algorithm for

colouring a list. In fact, sequentially you can 2 color a link list in order of n cost. In the

next  lecture  we  will  find  an  optimal  algorithm  for  list  ranking  which  has  some

similarities with the algorithm that we have just seen.

So, I presented this algorithm as a precursor to the list ranking algorithm that we shall

see in the next class. So, that is it from this lecture hope to see you in the next lecture.

Thank you. 


