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Welcome to the NPTEL MOOC on Parallel Algorithms. This is the first lecture of the

MOOC. I am Sajith Gopalan. I am a professor of Computer Science and Engineering at

IIT Guwahati.  I shall be your instructor for the course. Parallel algorithms deals with

computations done in parallel, that is when you have multiple processors to perform a

computation, what you use is a parallel algorithm. You would have done a course on

algorithms in your B. Tech program which in which you study sequential algorithms.

A sequential algorithm is an algorithm that is run on a single processor machine whereas;

a parallel  algorithm is run on a multiple processor machine.  In other words there are

multiple agents for you to achieve your computation.

(Refer Slide Time: 01:14)

Parallel algorithm attempts to find inherent sequentialities, within problems that we want

to solve. Every task has some sequentiality. For example, consider the job of build in a

house. Suppose, a man works for 10000 days to build a house, working alone he built he

spends 10000 days to build the house. 



That is 10000 man days of work, instead if we had 50 men working together for 200

days. The house would be built; still we have spent 10000 man days. What if we doubled

the number of man? Instead of 50 let us say we have 100 man. Could the house be built

in 100 days? Possibly, we achieve a speed up of 2 from the earlier case. When we had 50

man we took 200 days with 100 man we take 100 days a speed up of two.

But, over the 1 man case, we are getting a speed up of 100. What if we have 10000 man?

Can the house be built in a day? The answer is an emphatic no that is because there are

inherent sequentialities in the task of house building.

(Refer Slide Time: 02:20)

There are certain parts of that task that must be completed, before the other parts could

be taken up. For example, the walls can start only after the foundation was done, the roof

can start only after the walls are done.

These are the inherent sequentialities in this problem. So, when you consider any task,

there will be some inherent sequentialities in the task, if you try to parallelize the task.

Even if you have a large number of agents after a certain time, you will not be able to get

any further speed up, that is with even a larger number of agents, you would not be able

to speed up the process.
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So, where will that boundary begin, that is one chief field of investigation within parallel

algorithms. Consider computational task a problem P. Suppose, this problem P can be

solved in T 1 of n time with 1 processor; this is analogous to one man building a house in

10000 days. Here n is the problem size. So, T 1 of n is the time with one processor.

Suppose, with p processors, where P greater than 1 this problem P can be solved in T p of

n time. The speed up achieved is T 1 of n divided by T p of n. T p of n of course, would

be less than T 1 of n because, if you have more processors you would be able to solve the

problem faster. Like, when we had 50 man we were able to solve the problem in 200

days, which is a speed up of 50.

So, usually we would expect the speed up achieved with p processors to be P. But, this is

not always the case. As we saw when we had 10000 man, we were still not able to, we

were not able to build the house in 100 in a single day. So, for a very large p, it may not

be possible to achieve a speed up of p. But, still it might be possible to obtain an omega 1

speed up, a small omega 1 speed up still. The small omega of 1 speed up, would still be

achievable with any p.
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So, parallel algorithms is a branch of study, where we study the inherent sequentialities

of algorithmic problems. We design algorithms that run on multiple processors. When we

do this,  our  design goals  are  for  one minimizing  the  running time,  and the  other  is

minimizing the total  number of instructions  executed.  In the conventional  algorithms

course, you saw problems for which we were attempting to minimize the running time.

(Refer Slide Time: 04:54)

But, for those problems the running time was identical to the total number of instructions

executed.  This  is  not  the  case  with  the  parallel  algorithm,  when you have  only  one



processor, the running time is identical to the number of instructions executed. But, in a

parallel algorithm, we assume we have multiple computing agents. All these computing

agents are alive all the time; that is throughout the execution of the algorithm, all these

computing agents are in operation. Therefore, they are all contributing to the cost of the

algorithm; they are all executing instructions simultaneously. Therefore, the total number

of instructions executed, would be the sum total of all the instructions executed by all the

agents. Whereas, the running time would be the parallel running time like, in the case of

50 man working together  to build the house in 200 days,  the running time was 200

hundred days.

But, the cost of the operation was still 10000 man days. So, the running time is one thing

the  cost  is  another  thing  in  the  parallel  sitting.  In  the  sequential  setting  these  2 are

identical. The running time is smaller than the number of instruction is executed; usually

the running time is less than the cost, when you have multiple agents as I said you would

expect to get a small omega of 1 speed up therefore, the running time will be less than

the number of instructions executed.  Minimizing 1 does not necessarily minimize the

other. Therefore,  here we have more challenges, than in the sequential  setting. In the

sequential  algorithm setting,  we try to  minimize  one parameter  which is  the running

time.  Here  we  try  to  minimize  2  parameters  the  running  time  as  well  as  the  cost.

Minimizing 1 does not necessarily minimize the other, and we may want to minimize

both, that is why we have greater challenges here.

(Refer Slide Time: 06:38)



But,  then  it  is  good  to  have  a  reality  check,  we  are  designing  algorithms  for

multiprocessors,  and in  reality  multiprocessors  tend to  have  only  a  small  number  of

processing elements. Because, of various hardware constraints, we have not been able to

design multi processors with very large number of processors. But, in this course, we

will be talking about algorithms, that use a large number of processors. For example, we

shall see algorithms that run in order of login time, using n processors, where n is the

problem size.

So, if n tends to say infinity the number of processors tends to infinity, that is found very

large instances, we assume a large number of processors. We might also see algorithms

that run in order 1 time, using order of n squared processors. For example, which means

the number of processors quadratic in problem size, is there a disconnect from reality

here? Not quite, there is a purpose in what we are doing. We can always simulate the

algorithm that we design on a real machine. What I mean by a simulation is this? Let us

say, we design an algorithm, assuming n squared processors, for a problem size of n. If n

runs into thousands then the number of processors required would run into millions.

But, let us say we have only hundreds of processors. Using these hundreds of processors,

we can execute every single step of the million  processor machine.  But,  then in  the

million  processor  machine  we  assume  that  every  step  is  executed  by  a  million

processors. But, if we in reality have only 100 processors, these steps will have to be

simulated,  that  is  we will  take  100 processors,  let  them pretend  to  be  the  first  100

processors initially. After completing the work of the first 100 processors, these same

100 processors will pretend to be the second set of processors, and so on.

So, the million processors that we have will be measured in units of 100. That is in one

parallel step we had 10 one million processors executing simultaneously, instead now we

have  only  100 process  executing  simultaneously. (Refer  Time:  09:00)  So,  these  100

processors will pretend to be the first 100 processors, it in the first round of simulation,

than in the second round of simulation they will pretend to be this second set of 100

processors and. so on.

So, these 10 processors can simulate, the 1 million processors one after the other. All that

happens is  that,  what would have executed in 1 single step,  would now take several

steps. But, that will be 1 million times 1 million divided by 100 that will be the amount



of time you will have to spend on that one step. Then the cost does not change, when the

number of processors has reduced from 1 million to 100 the speed up is lost. The time

required  goes  up  proportionately.  Therefore,  we  are  actually  not  losing  in  cost,  the

algorithm that we have designed using a large number of processors, can be simulated on

a machine with a small number of processors, for the same cost.

Provided the model  satisfies certain conditions,  which we shall  see,  later  by and by.

Therefore, our algorithms are not going waste, the algorithms that we design, can in fact

be simulated on actual machines with a small number of processors. For another, letting

the number of processors grow with the problem size allows us to explore the inherent

sequentialities on of the problem. It is thus that exposed the inherent sequentialities in the

house building project, when we had only 1 man the house building project finished in

10000 days, when we increased the work force to 50 man, we had a speed up of 50,

when we increase to the 100, we had a speed up of 100.

But, when we increase it, increase the number of men beyond 100; we will not get a

proportionate speed up, the speed up starts slowing down. That is because, the inherent

sequentialities  of  the  problem begin  to  show. So,  when  we  consider  an  algorithmic

problem and attempted to solve with a large number of processors to attain the maximum

parallelism that we can achieve, the inherent sequentialities so the problem will begin to

show. Once we classify the problems based on their  inherent  sequentialities,  we can

decide  which problem is  hard and which problem is  easy, we can classify problems

accordingly  and  for  different  classes  of  problems  we  can  evolve  different  design

techniques.

So, the work that we are going to do is indeed has a connection with reality, it is not

disconnected with reality as some would assume. In any discourse on algorithms, the

participants of the discourse must first agree on the model of computation. The model of

the  computation,  the  model  of  computation  is  the  more  the  machine  on  which  the

participants would agree to design algorithms, if a consensus is not evolved, then the

participants will be talking about algorithms for different machines and they would not

be on the same platform and there could be confusions.
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Therefore, what we need is first, need first is the consensus on which machine we would

design the algorithms.

So, in the context of parallel algorithms we are talking about multi processors. So, we

need to evolve the consensus on which multiprocessor we shall work on. Now, in the real

world there is a plethora of multi processors, it is not easy to choose one and it is harder

to get a consensus, we are embarking on a theoretical study of parallel algorithms. So,

the machine that we are talking about need only be a theoretical one.

So, we will assume that we have multiple processors and we will assume each processor

is like a random access machine, which is used in the design of sequential algorithms and

it is an introduction to random access machines, can be found in the textbook by Aho

Hopcroft and Ullman titled design and analysis of algorithms. I will encourage you to

look up the introduction to random access machine in that textbook.

So, we shall assume that in our models, each processor is a random access machine. We

shall come to the details of random access machine shortly. So, we assume that every

processor is a random access machine. Now, in the context of parallel algorithms, we

want the computing agents to cooperate with each other in solving the problem, which

means, they have to communicate with each other.



So, the model should provide a way for the processors to communicate with each other.

So, that is one aspect that we have to fix, how do the processors communicate with each

other. There are various ways for the processors to communicate with each other; there is

a  model  in  which  there  is  a  shared  memory,  a  memory  that  is  shared  by  all  the

processors.  So,  the  processors  can  communicate  through  the  shared  memory,  one

processor will write into the shared memory and the other processor will read from the

shared  memory,  then  a  message  has  gone  from  the  first  processor  to  the  second

processor.

So, shared memory can be used, as a way of communicating between the processors.

Such models  are  called  parallel  random access  machine  models.  So,  we shall  study

parallel random access machine model algorithms in detail, most of the first half of the

course will be occupied with that. In the second half of the course, we shall see some

inter connection networks. In inter connections networks, there are connections between

processors, there is no shared memory.

But, processors can communicate with each other, through connections between them.

So, through the connections, the processors can send and receive messages from their

neighbors.  So,  we  assume  that  for  every  processor,  there  is  a  fixed  number  of

interconnections to some of the other processors, it is not necessary for every processor

to be connected to every other processor. So, each processor can have a subset of the

other processors as its neighbors because, it has connections to them.

So, in any one single step, each processor of the machine can communicate with it is

neighbors,  by  sending  messages  along  the  connections.  Then  of  course,  we have  to

answer the question is our model a synchronous model or an a synchronous model. In a

synchronous model, all the processors will be executing in lock step, all of them will be

fed the same clock. But, in an asynchronous model, each processor will have its own

clock. This course mostly deals with algorithms for synchronous machines.
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There  are  some  differences,  when  we  between  parallel  algorithms  and  sequential

algorithms, the task of designing parallel algorithms is more challenging.

That is because, we have to deal with a process or a location, that is we have a number of

computing agents, now we have to decide, which computing agent will handle which

part of the job. That is what is called processor allocation. Then there is the issue of

synchronization. That is what we said just now in this course we will be dealing mostly

with synchronized algorithms, resource sharing. In fact, there is no consensus on, which

is  the  ideal  model  of  computation  to  be  used  for  designing  parallel  algorithms,  in

literature that is why you find different models in use and parallel algorithms historically

have been designed on a number of models.

But, then to get on to the same platform we can try to simulate these models on each

other, we shall see some of that soon.
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So, we will begin with an introduction to Parallel Random Access Machine. In a parallel

random access machine, we have p processors. All the processors have access to a shared

random access memory and then we assume that all the processors are synchronous, in

that all of them are fed the same clock. Each processor is similar to a random access

machine, the standard model of sequential algorithm design, and each processor has the

unique index, that is if we have p processors. Let us say assume that the indices are the

numbers ranging from 1 to p, a unique number has been assigned to each processor. Let

us assume that the processor knows its index.

(Refer Slide Time: 17:18)



So, the crucial aspect of this model is the random access memory. So, this is a word

addressable memory, we assume that we have an array of words, each word we do not

put any limit on the word size. But, nevertheless, we shall assume that in problems of

size n, a word can contain order of log n bits. In other words, an integer of the form n

power k, where k is a constant, an integer of the form n power k, where k is the constant

can be expressed using k log n bits.

So, we shall assume that, a word in random access memory is capable of holding such an

integer. Then we assume that what we have is a word addressable memory. What I mean

by this is that each word in the memory has a unique address. So, as I have shown here,

the addresses starting from start from 0 and then go on. So, every word has a unique

address. The word can be accessed by putting out the address, a processor can put out the

address and the content of the location would be accessible to the processor. We assume

that the memory is potentially infinite. That is we do not put any upper bound on the

number of locations available. What it means is that, we will never refuse to execute an

algorithm for want of memory.

(Refer Slide Time: 19:32)

So, we assume that the memory can always be extended, if there is a need. A random

access  machine  has these properties.  Each basic  instruction takes 1 unit  of time,  the

machine has an instruction set including load, store, add, subtract, multiply, divide, jump

which is a branch statement, compare etcetera. So, that is the basic instruction set. Loops



and  subroutines  are  composed  of  these  basic  instructions  that  is  more  complicated

instructions will have to be made up of these basic instructions. We assume that each

memory access takes 1 unit of time and that the memory is potentially infinite.

The running time of an algorithm is the number of instructions executed by it. The space

used by an algorithm is the number of memory locations, it reads or writes. Now, even in

the case of random access machines, there can be a critic that, these two assumptions,

that the memory access takes 1 unit of time and that the memory is potentially infinite,

are not realistic and in fact, they are not. 

When you have a large number of memory locations, the memory access time certainly

cannot be the same for every single location. Even, if you arrange the locations in the

most compact spherical form, locations which are at the center of the sphere, are farther

from  the  processor,  than  the  locations  which  are  on  the  outer  surface.  Therefore,

accessing a memory location which is deeper inside will take longer.

But,  what  we assume is  that  the difference  between accessing two different  memory

locations is minuscule. Therefore, we can for all practical purposes assume that every

memory location is accessible in constant amount of time. Similarly, we also do not want

to put any upper limit on the size of the memory. On any real machine there will be an

upper bound on the size of the memory and the problems that are solvable will again

have a limit.

But, we do not want to refuse to solve a problem for want of memory. Therefore, we

assume that, the memory is potentially infinite because, if we run out of memory we can

always extend the memory. Therefore, for the mathematical model that we are going to

handle, we will assume that the memory is infinite. So, these are in a way unrealistic

assumptions, which are necessary to keep the model, simple and accessible. Every model

of computation in this manner, sweeps certain details under the carpet.

So, that is exactly what we have done with a parallel random access machine to we do

not put any limit  on the number of processors, the machine can have any number of

processors that we want. But, then number of processors is assumed to be finite.
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So, this is a diagram of a parallel random access machine, we have in this diagram 6

random  access  machines,  all  of  them  are  connected  to  a  shared  memory,  a  shared

memory that like the one we saw in the previous picture, with the potentially infinite

locations. All the processors are connected to the shared memory using a common bus.

So, the processors can put out addresses, of the locations that they want to access from

the shared memory location and the contents of the memory location will be accessible

to them for read or write purposes and we assume that all the processors are fed the same

clock, which is not shown in this diagram. We assume that the machine is a synchronous

machine.  So,  all  of  them  are  fed  the  same  clock,  which  means  the  processors  are

executing in lockstep.



(Refer Slide Time: 23:13).

We assume that every processor has, instructions made up of 3 phases. An instruction has

3 phases, the first phase of the read phase, the next phase of the execute phase and then

we have a write phase. We assume that there is a synchronization at the end of each of

these phases.

So,  all  the  processors  would  read  simultaneously  and  they  would  finish  reading

simultaneously and they would execute together and finish executing simultaneously and

then write simultaneously. So, it is not possible for the read of one processor to overlap

with the write of another processor which means, in the read cycle of an instruction. All

the processors are attempting to read the memory locations. So, all the addresses that

they are putting out would be for reading the memory locations.

Similarly, in the write phase, all the addresses that the processors put out are for writing

into the memory locations. Therefore, it is possible for the processors to conflict on read

during the read cycle, when multiple processors attempt to read from the same memory

location, we have what is called a read conflict. Similarly, in the write phase it is possible

for us to have a write conflict, when multiple processors attempt to write into the same

memory location, we have what is called the write conflict.

So, we can have read conflicts and write conflicts in this model but, we assume we do

not have read write conflicts that is because, the read cycle the read cycle and the write

cycle  of  an  instruction  are  separate,  all  the  processors  are  synchronized,  when  one



processor reads every other processor reads. Therefore, it is not possible for us to have

the read write conflicts in this model.
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The parallel random access machines can be classified according to the constraints they

impose on the global memory access. There are 3 kinds of models, the first one is the

exclusive read exclusive write model, this is the most a constraint of the 3 models, it

does not allow simultaneous access by more than one processor to the same memory

location  for  either  read  or  for  write.  CREW  PRAM  which  is  more  powerful  and

therefore, more lenient, is a model which allows simultaneous access for reads, what it

means is that read conflicts are allowed.

But, simultaneous writes are not allowed. In other words, multiple processors can read

from the same memory location  but,  multiple  processors  cannot  write  into  the  same

memory location and finally, we have the concurrent read concurrent write models, in

which  read  conflicts  as  well  as  write  conflicts  are  allowed.  Multiple  processors  can

access the same memory location in the read cycle. Similarly, multiple processors can

access the same memory location in the write cycle as well.

So, let us look at these models in detail and EREW PRAM that is an exclusive read

exclusive write PRAM does not allow simultaneous access of the memory locations for

either read or write purposes.
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When you consider a step of an EREW PRAM, it will have a read phase and the write

phase. In the read phase, the processors put out addresses that they want to access. Let us

say we have a machine with, the 9 processors, let me call them P 1 through P 9. Let us

say in one particular instruction, these processors want to read these memory locations.

So, as you can see, no two processors try to read from the same memory location. So,

what is taking place is an exclusive read, there is no read conflict anywhere. Therefore,

all these reads can be scheduled simultaneously and they will go through on the EREW

PRAM. So, this is what is happening in the read cycle let us say, when we come to the

write  cycle,  after  executing.  Let  us  say  these  same  processors  want  to  write  in  to

locations. Again you can see that, no two processors are attempting to write in the same

memory location. Therefore, this is a valid step, in this step no two processors attempt to

read from the same memory location in the read cycle and no two processors attempt to

write in the same memory location during the write cycle.

Therefore,  the read cycle  as well  as the write  cycle,  are  exclusively  exclusive write.

Therefore, this is a valid step of an EREW PRAM. Instead, if it were that, process of 3

wanted to  access  location  4 for  read purpose in  the read cycle,  then there is  a  read

conflict. Processor the P 1 is attempting to access location 4, P 3 is also attempting to

access a location 4, then we would have a read conflict. 



Therefore, this will not be a valid step of EREW PRAM. What we assume is that, if we

schedule such a step on an EREW PRAM the program would crash. Therefore, it is the

responsibility of the algorithm designer to make sure that, in every single step of his

algorithm no two processors will have the read conflicts or write conflicts. Similarly,

here if processor P 8 we have write in to the memory location 9, we would have a write

conflict.

Processor P 1 is writing in location 9, processor of P 8 is also writing in location 9, and

they have a conflict. So, there would be a write conflict. So, on EREW PRAM, the read

conflicts and write conflicts are not allowed.

(Refer Slide Time: 29:47)

Coming to a CREW PRAM, this is more lenient on this model. For example, for the

same 9 processors, during a reach step we would have, accesses of the sort, this is the

read phase. So, as you can see here there are read conflicts.

But, on this model we assume that the read conflicts are legal, that is, if we schedule

multiple  processors  to  access  the  same  memory  location  for  the  read  purpose,  the

program will not crash and the reads will in fact happen. So, here we see that, P 1, P 3

and P 6 are  accessing location  4.  So,  on location  4 there  is  a  read conflict  of three

processors.



But, this is legal all three processors will be able to read the contents of location 4. But,

instead in the write cycle we need, exclusive writes that is every processor should be

writing to a different memory location. If as an algorithm designer you would design a

step that has a write conflict your program will crash. So, it is your responsibility to

make sure that, while designing algorithms for CREW PRAMs to ensure that, there are

no write conflicts.

(Refer Slide Time: 31:40)

Now, coming to CRCW PRAMs, based on the write conflict resolution scheme that we

use, CRCW PRAMs can be further sub classified.  Now, here we know that different

processors can attempt to write into the same memory locations simultaneously, these are

what are called write conflicts. But, when a write conflict happens, multiple processors

would be attempting to write different values. For example, if P 1 and P 7 are attempting

to light write in location 4, then they are in a write conflict.

But, suppose P 1 is attempting to write 10 and P 7 is attempting to write 70, then there is

a conflict and we do not know, which one to let through or whether to let through any

one at all.  The policy which will decide, who will win if at all,  is called the conflict

resolution scheme. So, depending on the conflict resolution scheme that we adopt, the

models can be further sub classified.

So, the first of the models, that we consider is the priority CRCW PRAM.
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Let us say on a priority CRCW PRAM, with 9 processors, we have a write conflict of

this form. In the write phase, the processors P 1 through P 9 are attempting to write into

these locations. So, we find that, P 1 P 3 and P 6, are accessing location 4, P 4 and P 8,

are accessing location 35, P 2 P 5 and P 9, are accessing location 8, P 7 alone is accessing

location 11.

So, there are write conflicts and we have to resolve the write conflicts. On the priorities

here CRCW PRAM, we resolve the write conflicts using the priority of the processors.

We assume that a processor has a higher priority, the lower its index, which means, P 1

has a greater priority than P 2 and P 2 has a greater priority than P 3 and so on. So, here

we have P 1 P 3 and P P 6, accessing location 4 simultaneously. Since P 1 is the highest

priority of processor of these 3, we assume that P 1 wins.

So, out of the first set, P 1 wins. P 4 and P 8 are conflicting on location 35; P 4 has a

greater priority than P 8. So, we assume that P 4 wins, what that means, is that P 4 will be

successful in writing, the value that it wants in location 35. But, the write attempt by P 8

will fail. Similarly in the third set, P two P 5 and P 9 are conflicting on 8, location 8, P 2

will win and in the final group, there is only one member, P 7 is attempting to write in

location 11 alone and P 7 will win, it does not have any competition. So, on the priority

CRCW PRAM,  the  winner  in  any  write  conflict  is  the  processor  with  the  greatest

priority.
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The second CRCW PRAM that we consider is the arbitrary CRCW PRAM.

So, here what we assume is that, out of any set of conflicting processors, an arbitrary one

of them will win. So, if we consider the same example that we considered for the priority

model, the same write step and we run this on the arbitrary model, it could be that, the

processors win in this order, processor P 3 manages to write in location 4, P 2 manages to

write in location 8, P 8 manages to write in location 35, P 7 manages to write in location

11. As you can see, P 1 P 3 and P 6 are conflicting on location 4 and now we say that, P 3

wins. The model allows for an arbitrary one of the processors to win.

So, when the step is executed P 3 wins out of the first group in the second group P 2 has

1, in the third group P 8 is 1 and in the fourth group there is only 1 member and that

member anyway wins. So, this let us say is what happens, in the first execution of the

step, when we execute the same step on the arbitrary CRCW PRAM again, it could be

that out of the first group P 1 wins, in the second group P 9 wins, in the third group P 8

wins and in the fourth group of course, there is only 1 member, that member has to win.

So, what I am trying to say is that, if the same step is executed on the arbitrary CRCW

PRAM again and again, different processors would win, at different memory locations.

All that we know is that, an arbitrary one of the conflicting processors will win but, as an

algorithm designer  we are not  allowed to assume anything about  the  identity  of  the

winner, all we know is that one of the set will win.
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The third model we shall consider, is the comments here CRCW PRAM. In a common

CRCW PRAM, write conflicts are allowed.

But, then a write conflict is legal only if, all the conflicting processors are attempting to

write the same value. For example, we have for the same write sequence, P 1 P 3 and P 6,

conflicting on location 4. For example, if all 3 wanted to write 10, then the write conflict

would  be  considered  legal  on  the  common  CRCW PRAM  and  the  write  would  go

through. 

The  location  the  content  of  the  location  4,  will  now changed  to  10,  instead  of  the

previous value but,  instead if they attempted to write different values,  then the write

would fail, the program would fail, on the common CRCW PRAM we assume that, a

write conflict  is valid, precisely when all  the conflicting processors are attempting to

write  the  same  value.  But,  if  they  write  different  values,  then  we  have  an  invalid

instruction, which is akin to a division by zeros in, or conventional algorithms.

So,  we  assume that  on  a  corne  CRCW PRAM,  the  algorithm designer  would  have

ensured that, all the conflicting processors would be writing the same value for every

single write conflict.
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And the fourth model  that  we are consider, that  we consider is  the collision CRCW

PRAM. On a collision CRCW PRAM we want, a special collision symbol to be written

in every location, that encounters a conflict, it is conventional to use a dollar symbol, for

the collision symbol.

So,  let  us  assume  that,  the  special  collision  symbol  is  written  in,  every  conflicting

location.  Therefore,  in  our  example,  locations  4,  35  and  8,  will  end  up  getting  the

collision symbol. Whereas, location 11, has only one processor writings into it therefore,

what gets into location 11 will be the value that is written by the seventh processor, let

me denoted by V 7, let 7 be the value that the seventh processor wants to write, location

11 will contain this value.

But, all the 3 other locations, 4, 35 and 8 will contain the collision symbol. So, this will

be the result of the same step on a collision CRCW PRAM.
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And our final, model of final CRCW PRAM is the tolerance CRCW PRAM, this is a

model which merely tolerates, write conflicts. In the sense that, when a write conflict

happens, the previous contents remain, in every conflicted location the previous content

would remain. What that means is that? In locations, 4, 35 and 8, the previous contents

would remain as it is, whereas, in location 11, V 7 would be written, V 7 is the value that

process 7 wants to write in location 11.
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So, to summarize,  these are the CRCW PRAM models that we have seen. A priority

CRCW PRAM is where, in any concurrent write the processor with the lowest index

succeeds. An arbitrary CRCW PRAM is where, in any concurrent write an arbitrary one

of the processors succeeds; the program should work irrespective of the identity of the

successful processor.

(Refer Slide Time: 41:34)

On a common CRCW PRAM, all the processors involved in a concurrent write, should

be writing the same value. Otherwise the PRAM may behave unpredictably or we will

assume that the algorithm is invalid.

In  a  collision  CRCW PRAM,  when  multiple  processors  write  in  the  same  memory

location, a special collision symbol appears in that location. Finally, on a tolerant CRCW

PRAM, when multiple processors write in the same memory location, the content of that

location  remains  unchanged  which  means,  this  model  merely  tolerates,  a  concurrent

write.
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Now, let us see an example, of a parallel algorithm. Let us say we want to find the OR of,

n bits, given in an array a. So, let us say we have an array a, the locations of the array a,

contained bits ones and zeros and suppose, we want to find the OR of these bits. Let us

assume that OR model is, common CRCW PRAM, how do we find the OR of these bits.

If we have n processors that is we assume that we have one processor for every single

location of the array.

So, you can imagine that, you have one processor sitting on every single location of the

array. Then let  us take a location R, in which the final result  should go.  First  let  us

assume that, all the processors will simultaneously write a value of 0 into R, this is an

initialization. The location R initially contained some garbage, that garbage is rewritten

with 0 by all the processors, simultaneously. All the processors executing simultaneously

will change the value to 0, this is a write conflict, all the processors are conflicting on the

same  memory  location  R.  Let  us  say  the  variable  R  corresponds  to  some  memory

location in the random access memory.

But, then since all of them are writing the value 0, this is a valid write conflict and the

value returned by them will succeed, since the model is the common CRCW PRAM. So,

the content of the location R is now 0. Now, let us say, every processor examines its own

bit. So, processors 1 4 and 7, find that, they are sitting on a 1 bit each and they all will

attempt to change the content of R to one.  So, processors 1 4 and 7 will  attempt to



change  the  content  of  R  to  1.  Again  we  have  a  write  conflict,  we  have  multiple

processors accessing the same memory location and trying to change its content to the

same value and the write will go through because, the model is the common CRCW

PRAM.

So, if at all there are processors here; that are sitting on once, they will all attempt to

change the content of R to 1 and all of them will succeed. So, there are 3 cases, there is

no  such  processor,  there  is  exactly  1  such  processor  and  there  are  multiple  such

processors. If there is no such processor, nobody comes forward to change the location

R. Therefore, after this step, when all the processors examine this location, they find that

a zero is still in that location therefore, they realize that the result of R is 0.

But, if there is exactly 1 processor, that processor will come forward and change the

value from 0 to 1, which is the result of the R. Finally, if there are multiple processors, as

is shown here, there are 3 processors here sitting on once, all 3 will come forward and

attempt to change the location up to 1 and since all of them are attempting to write the

same value, the value will change to 1. Therefore, after this when all the processors come

and examine the location, all of them will find a 1. Therefore, 1 is the answer, that all of

them will realize.
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So, formally this algorithm can be specified in this fashion, to find the OR of n bits on a

common CRCW PRAM, when we are given an array A 1 to n of n bits, we proceed as



follows,  we  take  a  variable  R  and  initialize  it  to  0.  This  is  an  initialization  done

concurrently by all the processors. So, every processor attempts to write 0 in variable R.

So, here I have specified R equal to 0 without specifying which processor has to do it, if

I have not specified which processor has to do something, what I assume is that all the

processors have to do that simultaneously.

So, R is assigned 0 by all the processors executing simultaneously, then in the second

step, we have a parallel execution, every processor with it is index ranging from 1 to n,

will do this, the processor will check it is own bit in array a, if the bit turns out to be 1, it

will change the location R to 1. So, this is specified using this following syntax, we have

what is called a pardo construct, we say pardo for one less than or equal to I less than or

equal to n. The meaning of that is, that every processor, whose indexes I, where I ranges

from 1 to n, should execute the following in parallel.

So, what the processor has to do is this, that is the processor with index I has to do is this,

it checks whether A I is 1, if A I happens to be 1, then it has to change the content of R to

1.  So, we assume that,  every single step has  a  appropriate  synchronizations.  So,  the

condition check happens simultaneously, which means every single processor will check

it  is  own  bit  simultaneously,  after  that  all  of  them  will  attempt  to  update  R

simultaneously. 

So, if there is at all one processor that is attempting to write, the location R will now

contained 1 and finally, in the third step, we say return R, this is once again a concurrent

write of R, that is the content of R is return to the return address, by all the processors

simultaneously, which is again a concurrent write.

So, since I have not specified which processor has to do this write, we assume all the

processors have to do this simultaneously.
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In this algorithm specification, we have adopted some conventions. In the algorithm I

stands for the processor index, we assume that every processor executes the same code,

that is this  code is available  to every single processor. Only that this code has to be

parameterized by the processors index. Every processor in interprets I as its own index in

other words, the algorithm is parameterized on I in any step, if a processor finds that no

work is specified for it remains idle and in steps where all processors must partake.

But, they work has no dependence on I, the range of the active processors will not be

mentioned at all. So, that is what I was mentioning here, in the first step as well as the

third step, we do not specify which processors have to execute these steps ; that means,

all the processors have to execute these steps. So, these are some of the conventions we

shall use in algorithm specifications. So, that is it from the first lecture, hope to see you

in the next lecture.

Thank you.


