
An Introduction to Programming Through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture-22 Part-04

Representing variable length entities

Automating memory management

(Refer Slide Time: 00:21)

Welcome back. In the previous segment we discussed a strategy for preventing memory leaks

and dangling pointers. In this segment we are going to see how this strategy can be automated.

So, we are going to do this by actually implementing the automation process. So, towards that

we are going to define a class called String, which will be a class for representing character

strings.

(Refer Slide Time: 00:47)

What we want to do is, we want to be able to store character strings of arbitrary length into

objects of this class and we should be able to pass strings to function, we should be able to

concatenate them, we should be able to copy them and we should be able to index to get the

individual characters of the string. And all this we should be able to do without worrying about

allocating memory, memory leaks, dangling references and things like that.

(Refer Slide Time: 01:16)

All right, so what exactly are we wanting and what freedom do we have? So, let me sketch that.

So, let me begin with a sample program, so here is a sample program. So, in this we are

assuming that this string class has already been implemented and so we are saying that look we

want to create instances of that String class and then we want to assign values to that String

class. Then here we want to index into this a. So, we want the first element, so if a is pqr, then

this is the zeroth character, this is the first character, so they should print q.

Then there is a block over here, so because there is a block I can define another b inside. So, this

b should be set equal to a+a. So, it should be set equal to a+a and what is a+a? Well a plus a we

would like it if it means the concatenation of the left operant and the right operant. In this case

these two a’s are the same operants. So, it should be concatenation of this, so at the end of this,

this b should be pqrpqr.

Then we should be able to print this b. So, there should be a member function print and then

afterwards after we exit from this block, we should be able pass our object to a function. So, this

is an argument to the function and if this is a pass, if this is a call by value then this value should

get copied to the parameter of this function f. Alright so now this is our program.

So, let us see, how C++ executes it. So, how does C++ view the various statements and what is

sort of that the normal way of executing something like this. So, first this string a, b. So, the way

the string a, b works is that C++ cause the constructers on a and b. So, we should be writing the

constructers and therefore we should be able to do whatever we want when the statement

executes. So, this is relatively simple.

Now, the next statement is a=b=”pqr”. So, how do you interpret this? Well these are operators

equals to are operators, so this operation equal to, if there are several this is right justified. So,

first this operation happens, so the way that happens is that this becomes the receiver. There is an

operator equal to function and that is called with this. So that is what this is and then the result of

this has to be assigned to this a, and so a is acted upon the operator equal to, but with the result of

all of these things.

So, C++ will do this. C++ is going to allow us the flexibility of defining these functions

operator=. So, the operator= functions should make copies, may be allocate memory. Whatever

is needed can be done inside those operator equal to functions. And we have to do that and we

have to also make sure that while doing that there are no memory leaks and there are no dangling

references.

So, proceeding along in this program we have this a[1] if you remember we said that a[1] is also

an operator expression. The operator b in this square bracket, so this C++ reads as a operated

upon by the member function operator square brackets with the argument being 1. So, again

whatever we want to happen as far as evaluation of this a square bracket 1 is concerned we

should put in a operator square bracket.

Then there is a+a the new part there is of course the assignment but that is leave it alone for the

minute, this is the new part and a plus a is again as far as C++ is concerned a dot operator a with

argument being a. So, this a is the receiver, this a is the argument.

So, if we want this whole thing to produce concatenation then we have to define this operator

plus member function suitably. Then b dot print is there but b dot print is fairly standard we just

have to have a member function, so this should not be too difficult, we just want to print it. But

now there is this exit we are exiting the block.

So, at this point we want b to be destroyed. So, as we have said earlier that all the variables

which are created inside a block will be destroyed at the end of the block. For this C++ also has a

special member function that special member function is called the destructor and that is written

by the symbol “~”. So, ~b is the call that is made and that call is the destructor call.

So, again if you want something to happen over here then that can be put in the destructor call

and let us take a quick look at this would we want something to happen over here? Well here b

has been assigned a value. So, presumably we allocated some memory. So, when we exit that

memory should get deleted and that deletion we are going to put, the core for the deletion, we are

going to put in the destructor of b.

So, any memory that was associated, any heap memory that was associated with b should be

deallocated when the destructor gets called. If we do not do that and if we just destroy the

variable b then we will have a memory leak.

Finally, we come to this call f(a). So, f(a) is let us say it is a call by value in which case this a has

to be copied over to the parameter of the function f. So, a is passed as argument and copy of a

has to be made. And this copying C++ does using something called a copy constructor. Well that

parameter is being constructed and it is being assigned a value the parameter is a variable of the

same type as a. And so that parameter is being constructed and its constructed with a copy of a

and therefore this kind of this is called a copy constructor.

(Refer Slide Time: 09:03)

So, we will see this in a minute. Alright so the overall plan is as follows we will define the

constructor, assignment operator, square bracket operator, plus operator, destructor, print

function, copy constructor to do their own work which is say the indexing operator must get the

appropriate character. But while doing all of these things, or say the plus operator should

concatenate the strings. But while doing these things if some memory management is needed

those corresponding functions should do that memory management as well. And thereby we

should be preventing memory leaks and dangling references. So, that is the plan.

(Refer Slide Time: 09:54)

Here is one more basic idea that we will need in order to do this implementation. So, we will

store the string itself. The string that is going to go and sit inside this assign to this variable that

string itself will be stored on the heap while we maintain a pointer ptr to it inside our class.

So, the idea is that if we store pqr in b, what we are going to do is inside the object b, we will

have a pointer to the heap and pqr itself will get stored on the heap and whenever we store

strings, we will terminate them with the null character. And this is always done so that we do not

have to keep the length of the strings around, the sentinel null will be enough.

(Refer Slide Time: 10:57)

So, our object that we design for a string class is going to contain one member ptr and this is

going to be pointing to the heap if there is something in this. If there is nothing in this, then this

will be set to null. Null is also zero but never mind that, we are always going to use null so that

we know that we are talking about pointers.

And this capital null means the pointer really is invalid. So, to avoid dangling references and

memory leaks, we will ensure that each ptr will point to a distinct char array on the heap. Before

we store into ptr, we will delete the variable it points to. And when any ptr is about to go out of

scope, we will delete the memory that it points to. So, other designs also possible, one of them is

given in Appendix G of the book. But we will just discuss this simple design.

(Refer Slide Time: 12:00)

So, here is the definition of the class string. So, it contains this ptr and it is a pointer to char and

then it has these public methods or public member functions. So, there is a constructor may be

more than one constructor. So, the very basic constructor is going to just set the ptr to be null that

just says that if I just write string a as I had written earlier, string a semicolon then the ptr

member of a will be null indicating that a is empty.

Then we wanted a print function, we wanted to be able to say print, a.print, so that we can

immediately define. So, all we have to do is, we have to print the characters that ptr points to. So,

let us be a little bit fancy and let us check if ptr is not null in which case we just print everything

starting from ptr till the null character.

Otherwise we will print out a message “NULL”. So, there could be, you could have done other

things, you could have put out full sentence whatever it is. So this is we have defined one

constructor and we have defined one very simple member function but there are lots of other

things to be define. So, that is what we will do next.

(Refer Slide Time: 13:42)

Alright, so what we have we discussed, we said that we wish to design a string class which

supports assignment, concatenation, indexing and all of that. And then we took some decisions

regarding how to design it. So, we said that there will be only one data member in the class

which is a pointer. The pointer will point to the heap memory, to the position in the heap

memory where the actual string will be stored and that string will be stored there null terminated.

We will write all the other member functions, lots of other member functions that are required

say constructors, we will overload the assignment operator, the square bracket operator and all

such things to accomplish the required operations and also the required memory allocation and

deallocation. So, in the next segment we are going to talk about the implementation but before

that we will take a short break.

