
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Lecture 20 Part 2

Structures Part 2

Vectors from Physics

Welcome back.

(Refer Slide Time: 0:34)

In the previous segment, we motivated the need for member functions. In this segment, we are

going to talk about vectors from physics and then later on, see how they how they can be

implemented using member functions and the operations on the vectors using member functions.

So, we have already talked about this.

(Refer Slide Time: 0:44)

So, say you are writing a program involving velocities and accelerations of particles, which

move in 3 dimensional space. Then you would find it natural to represent the vectors using a

structure with members x, y, z. So, V3 is the structure type so for 3 dimensional vectors, and its

members are x, y and z, which are all doubles. And, of course, other representations are also

possible.

(Refer Slide Time: 1:21)

So, how do you use this struct V3? Well, there could be several operations that you might want

perform. So, for example, you might take 2 vectors and add them up together. So, a function, an

ordinary function which does this, would look something like this. So, you have this function

name. And this function is going to return an object of type V3 or structure of type V3 and it is

going to take arguments which are also of type V3 and we are taking arguments by reference.

So, first it is going to create internally, a V3 object called v and this is going to be our result. So,

what is the result going to look like, well its x component is going to be the sum of the x

components of these two objects similarly, the y, similarly the z. Then you could have a scaling

operation which takes vector and a scale factor, and simply multiplies the scale factor that each

of the members and so the resulting vector is going to be returned.

As you remember, this operation is going to return this vector that means the values will get

copied in some suitable place in that calling program. Here is another possible operation that you

may want with vectors which is a length operation. So, the length operation simply takes a single

vector and it returns the square root of the sum of the individual members. So these might be

some operations that you might want to perform on your structure type on objects of your

structure type V3.

(Refer Slide Time: 3:29)

Well here is an example of use of vectors in which these operations can come in quite handy.

And this is so called motion under uniform acceleration. So, we have a particle which has initial

velocity u and uniform acceleration a. Then its displacement at time t, ‘s’ is given as u times t

plus at square by 2 and this is applicable even if u, a and s are vectors and t is a scaler, if it is a

time. To find the total distance covered or the total displacement rather we must take the length

of the vector s.

So this might be whatever program looks like. So, we have V3, we have 3 vectors of type V3 u, a

and s - velocity, acceleration and displacement. And first we read values into u and a. Next, we

could we could calculate this for single value of t but just for fun we will calculate it for multiple

values of t. t ranging from say 0 through 9. So, what will this how we will do it? Well so s is

going to be sum of these two quantities and what are these two quantities?

Well they are u scale by t and then a scale by t square upon by 2. So, what is going on here? a is

a vector, scale of a and t square by 2 is also a vector. That vector and scale of u times t are being

added up and the result is this sum, is this displacement s and this displacement is also a vector.

So, this looks like an ordinary assignment, but really it is it is more complicated than that, when

you when you look at in the ordinary assignment you are tempted to think of it as sort of basic

data types.

Whereas over here, 3 components are being assigned in parallel, or 3 components are being

passed to this function and this function is returning 3 components, so is this. So, then we print

out as a function of t, the displacement that has happened and that is it. So, that is the program.

As you can see we could have return this program by accessing each component of u, s and t, but

rather than that we chose to use these functions sum, scale and length. And the reason for that is

that they reflect better what operation we are actually performing. And furthermore, once you are

somebody writes the operations sum, scale and length and tests them and make sure that they are

right, then you can be more confident that your code is actually correct.

(Refer Slide Time: 6:48)

So, let us do a quick demo. So, first we have the structure type, then the sum, then the scale,

length and then we have the main program. It is really what we what we saw on the slides. So, let

us just run it, compile it and run it.

(Refer Slide Time: 07:03)

So, now we are supposed to type in the velocities and the accelerations. So just so that we can

see what is going on. Let me type the initial velocity to be 0 and let me type the acceleration to

be say 1. So this is a plot of what happens to the particle as a function of time. So by making

these things simple, you should be able to check that these are in fact the correct answers. So,

what is going on over here is, I guess, you can think of it as a particle which is initially at rest is

moving may be falling down to gravity or something like that. Now we could ask, can we do the

same thing with member functions? And this is how it looks like.

(Refer Slide Time: 8:23)

So, here we have a member function, which calculates the length and that member function is

being called over here. This red text is the call of that member function. So, length is a member

function. You can see that it is inside the structure definition. And a member function f of a

structure type x should be invoked on a structure s of this type x by writing s.f(arguments),

which is exactly what has happened over here.

So, V is a structure of type of V3 and we are invoking this function on v by writing v. length.

There are no arguments specified over here. So, no arguments are given here as well. Now, this s

or this v is called the receiver of the call. So, there is another analogy here as well that this part is

sometimes even called a message being sent. A message is being sent to this object and that

object responds, so that is that is another metaphor that is used.

But anyway we are going to call this thing before the dot as the receiver of that call. So, in

v.length, v is the receiver, and it is a function call. So, all function calls it executes by creating an

activation frame. And the references to the members of the body of the definition of the function

refer to the corresponding members of the receivers. So see this you have x.x, y.y, z.z. What are

these x, y, z? Well they are these, but as far as these calls are concerned they are members of the

receiver. So this x.x, when this call is being made will actually refer to v.x, this is refer to v.y,

this is refer to v.z. So, then v.length executes x, y, z refer to v.x, v.y, v.z. So, as a result of this

v.length is going to return one square plus two square plus three square plus two square again. It

is square root so 1 plus 4 plus 9 square root of that is 3.

Now, the receiver itself is also an argument otherwise how would you know what does x mean.

So, this receiver is an argument and it is it is kind of a hidden argument. Well it is not really

hidden. It is actually upfront, it is it is really at the front. So, it is a kind of a special argument.

But it is not there in the argument list, in the parameter list. Alright, but it is an argument

nevertheless. And it is an argument which is passed by reference.

So in this code, if you change x then the x member of v is going to get changed. So, it is this v is

being passed by reference that is why this happens. If v is v is passed by value, then if you

change x that would not be that would not happen. But indeed, the receiver is passed by

reference. So, we can write the other functions as member functions and here is the complete

definition.

(Refer Slide Time: 12:15)

So, this is our struct V3, the members then this is a first member function which we just saw.

This is the sum operation written as a member function, so sum of V3. Well V3 in what, we need

two arguments to make this sum. Now, that sum, the first argument is the receiver itself. So,

coming over here, so we are doing ut.sum of at/2, so ut is one V3 which is being added to at by 2

which is another V3, so in this case this v is going to be at/2 and ut is going to be the receiver for

this.

Alright, so now what how does this functions work. We are supposed to add up the 2 vectors and

pass the resulting vector. So we are going to create the result that over here. V3 of v is going to

be our result vector. Now, the x member of this should be the sum of this ut x and at/2 x. So this

is ut x and this is at by 2 x; similarly y, similarly z. And then we return this vector so that is how

this sum works.

Scale is similar, for the scale so we have u.scale(t). So, u is the receiver and t is the argument. So

t is, the value of t is placed in f, so again what we are we calculating, we are supposed to

calculate the result which is V3 vector, which is the scale version of the receiver. So, to

implement that this is the x member of the receiver, we scale it up by f and put it in the x

member of our result V3. And so we construct all V3, the 3 vx, vy, vz and then we return v.

How does it look like in this function? Well we wanted to calculate u times t so that it is scaling

so we partial result we put over here. Then we wanted to calculate at square so that is a times

scaling by t square by 2. So a.scale of t square by 2 and then we have to add up these two things.

So, that is what is happening over here. Finally, we have to take the sum of the length of that

sum and so that is happening over here.

And I should say that we do not necessarily need to have so many variables if we do not want.

What is happening over here is we are going to scale and then the result is going to be summed

with the scale version of this. And that we can take length, we can apply the length member

function to this entire result. And we are going to, we will then get the length. So, here we can

think of this as one long complicated expression, instead of that we have broken up that

expression into 3 separate expressions which are of course related.

(Refer Slide Time: 15:40)

So, what we have discussed? So we discussed the syntax of member functions. We have said that

member function is physically placed inside the struct definition. And we said that the call to a

member function looks like receiver.function_name followed by the arguments. The member

function executes like an ordinary function with the receiver being an additional argument and

the syntax makes the receiver look very different and indeed it is very different. It has a special

relationship.

There is nominal special relationship in that the receiver is being definitely passed by reference

but in addition to that somehow if I write say v.something, then I know this is something which

is happening and it has some special meaning in the context of v. Usually. Or it tells me look this

the code for this function will be found wherever v is itself defined.

We also said that the receiver is implicitly passed by reference and so the call can actually be

modified by the members in the receiver. And this syntax is reasonable but you might ask well

we really need it? We have used the usual function called syntax, so that is that is not quite clear

yet, but it will become clear quite soon. So we will take a quick break over here.

