
An Introduction to Programming through C++ 

Professor Abhiram G. Ranade 

Department of Computer Science and Engineering 

Indian Institute of Technology, Bombay 

Lecture 19 Part 2 – Structures (Operations on Structures) 

 

(Refer Slide Time: 0:19) 

 
Welcome back, in the previous segment we discussed how to create structure types and also 

create variables or structures or instances of an already created structure type. In this segment 

we are going to see what kinds of operations we can perform on structures. So the first 

operation, the first thing we can do with structures is to initialize them during creation itself. 

(Refer Slide Time: 0:50) 

 
So let me just remind you this is our structure type Book, it contains numbers, title and price 

and I can create an instance or I can create a structure of this type and I can initialize it. So 

the initialization as usual happens through braces and the first element in the braces initializes 



the first member which is title and so b.title would be set to the string “On Education”. Then 

the second member in the braces initializes the second element in the braces I should perhaps 

say, initializes the second member of the structure type book which is price. So this initializes 

b.price to 399. 

So again let me remind you that “On Education” is a character string and it is stored with a 

terminating null as usual. And you might have lots of members in a particular structure type, 

so you have to give as many as many values in braces and having the appropriate type. You 

can make structures unmodifiable by adding the keyword const. So for example you may 

define a structure variable c with title member being “The Outsider” and the price being 250 

but here you are saying that c cannot be modified. Either of the two members of c cannot be 

changed as your program executes. 

(Refer Slide Time: 2:37) 

 
Now one structure can contain another. So for example we might have a structure Point 

which contains say the coordinates of the point and now if I want to define the structure disk 

it would be natural to have the center being defined as a point. So the first member here is a 

point which is a type, so all that we really need is a proper type and so point center is 

perfectly fine. And then the second member is of type double and we are going to call it 

radius. 

So we can create a structure d or an instance of type Disk by writing Disk d. So I can write 

d.radius because after all radius is a member of d and I can say d.radius to be 10. But d has a 

member center which in turn has a member x, so I can write d.center.x equals 15. Okay and 



of course I can write d.center.y as well to whatever y coordinate I think the center ought to 

have. I can assign one structure to another, okay. 

(Refer Slide Time: 3:55) 

 
So basically all members of the right hand side get copied into the corresponding members of 

the left hand side, so the name of the structure stands for the entire collection unlike array 

names. 

So array names stand for the address where the array has been allocated memory, structure 

are not like that, the structure name stands for the entire collection. And as I said earlier, a 

structure is a variable or you might actually think of it as a super variable because it contains 

you can also think of the members being the variables which are contained in this bigger 

variable. So as an example we have a book b with title “On Education” and price 399 and say 

we have a book c, so now we can write c=b. This will copy both the members and so if I print 

c.price the price member of c which is which has been copied over from b is 399 and so 399 

will get printed. 



 

(Refer Slide Time: 5:17) 

 
Structures can be used with functions and they can be passed to functions by value. So when 

you pass it by value it sort of like assignment, all the members are copied to the parameter uh 

parameter structure and of course the usual thing is that the types must match. So, even in an 

assignment and even in passing the types must match. Structures can also be passed by 

reference and this means exactly the same thing as in case of variables. So in the calling, in 

the called program, the parameter name refers to the same variable which was passed from 

the calling program, the calling function. And you can return structures as well, so what does 

that mean? So all the data members of the structure that you want to return are copied back to 

a temporary structure in the call, in the calling program, and then you can do whatever you 

want with that temporary structure. Basically this temporary structure is going to be in place 

of the call, so call should be thought of as returning the result and that is where the temporary 

structure is going to be. 



 

(Refer Slide Time: 6:41) 

 
So we will see examples, so first an example of passing by value. So here is a structure Point 

the one we saw earlier, it has members x and y both double. Now here is a function called the 

midpoint, it takes as arguments a and b which are both points. 

And it thus it creates a new point mp and returns that, so we will see exactly what happens 

and then there is a main program and the main (main) program is going to call this function 

midpoint. So the first call the red call okay, suppose we start executing main and come to the 

red call, so what happens? So the arguments p and q are copied to the parameters a and b. So 

this is the call and these arguments p, q are copied to these parameters a and b and now the 

code of midpoint starts executing. 

So the first step is that a local structure mp of type Point is created and this is created in the 

activation frame of this function midpoint. Its x and y variables are set suitably and if they are 

set to the mean of the x and y variables of x and y coordinates of points a and b and then this 

mp is returned. So this happens as follows: so a temporary structure of type point is created 

and that structure sort of stands in for this call, okay? And the elements of or the members of 

mp are copied into that temporary structure, so you can think of this entire structure is copied 

into that entire structure, okay? 

And subsequently what will happen? Main program will start executing again and this will be 

assigned to r. So mp is copied into the temporary structure and the temporary structure is 

copied into the structure r and then in this we can print r.x, that is perfectly acceptable and 

here is another call, okay, so here we are calling midpoint but we are directly taking its x 



coordinate. We are not putting it into any local variable and taking, taking the coordinate, 

taking the member, we can do this, we can just we can just put .x and this will (this will) just 

mean whatever this call returns take its x member, okay? 

(Refer Slide Time: 9:54) 

 
We can pass by reference as well and in this case the code is really the same except that we 

have these two &s which indicate that is the a and b are passed by reference, okay? So in the 

execution of midpoint(p, q) the parameters a, b will refer to variables p and q okay, nothing 

will be copied over. Now there is no coping of p, q and this will save execution time if the 

structures being passed are large and indeed if you are passing large structures it is good idea 

to pass them by reference. The rest of the execution is as before. And normally if I have a 

reference parameter as I have that because I want to modify it and therefore it is expected that 

reference parameters should be variables. 

So these so whatever is being called over here should be variables because only then can I 

modify them, modify these reference parameters in the code. However this const says that 

this code promises not to modify these things, these parameters. 

And therefore with this const. you can pass constant points as arguments to midpoint as well. 

So constant structures can be passed as arguments. So in fact, I can write midpoint of the 

midpoint of p and q and q. So this will sort of get me a point which is a quarter of the 

distance away towards q between p and q, okay. So I can do that as well, I can nest these calls 

also. 



 

(Refer Slide Time: 11:55) 

 
Next I can have arrays of structures if I wish, so for example I can write Disk d and this just 

defines variables d[0] to d[9] each of which is a disk. Similarly I can have a variable lib 

maybe short for library which is an array of 100 books, so again this defines variables lib[0] 

through lib[99] each of which is a structure of type Book, okay? 

So now these (these) variables are just like ordinary disk variables and so I can take the 

center x and all the usual stuff. And this also is sort of usual variable, so I can take its 

member but the member happens to be an array, so I can write I can index into it and so this 

is going to print the third character of the fifth book in the array library or I guess I should 

have called it lib because this is how we created it. So it is not really, read this as lib in both 

the cases. 

 

 

 

 

 

 

 

 



(Refer Slide Time: 13:01) 

 
Alright, so what have we discussed? We have discussed number of operations on structures, 

initialization, nesting and by that I mean have a member b another structure and we have 

discussed passing and returning structures from functions, we have also discussed creating 

arrays for functions. In the next segment we will have a detailed example involving structures 

but let us take a quick break. 


