
An Introduction to Programming through C++ 

Professor Abhiram G. Ranade 

Department of Computer Science and Engineering  

Indian Institute of Technology Bombay 

Lecture No. 17 Part - 1 

More on Arrays 

Textual data 

Hello and welcome to the NPTEL course on An Introduction to Programming through C++. I am 

Abhiram Ranade, and today's lecture is also about arrays and the reading for it is from chapter 15 

of the text.   

(Refer Slide Time: 0:35)  

 

So, here is an outline, so the first topic that we are going to look at is how to represent textual 

data, then we will talk about two-dimensional arrays and in this, one of the examples will be how 

to create polygons in simplecpp. And then we will talk about accepting command, accepting 

command line arguments. 



(Refer Slide Time: 0:55)  

 

Textual data, we have already talked about a little bit. So we said that the char type was specially 

meant for storing single letters. Now, obviously the natural step would be to use an array of char 

to store sequences of letters. So, for example, you could use arrays, an array of char to store 

words, sentences, paragraphs, maybe a character string like “India”, maybe a character string like 

“C++ is nice” with spaces inside it. And the textual data representation that I am going to talk 

about today is derived from the C language. C++ has nicer representations and we will learn 

about them a little bit later, but whatever we learnt today will also be useful even in that nicer 

representation.  



(Refer Slide Time: 1:58)  

 

So, character arrays we already know, well we know arrays and therefore, character arrays are 

not really different. So as always we define an array by giving the type name, the name of the 

array and then in square brackets the size. So, here I am defining two character arrays, one array 

called name, of length 10, and another array called address, of length 50 and both have the type 

char. So such arrays can be used to store character sequences or character strings as they are 

more often called.  

And you may, you often use an array of a larger length to store strings of smaller length that is 

because often you do not know how long the string is that is you want to store, say in the name in 

the in the array name because you may not, you may not always calculate what is the exact name 

of this person before storing the name of the person into the array, you may just allocate a large 

enough array for storing say the name of a person. 

Now the arrays are character arrays are really not any different from other arrays, but there is a 

difference in the way they get used. Specially there is a protocol for storing character strings that 

is inherited from the C language and here is what the protocol is. So, if you want to store a 

character string into an array you store the string in the array starting from element 0. After all 

the characters in your character string are stored in the array, you also store the character whose 

ASCII representation is 0, often written as “\0”, this character is often also called the null 

character.  



So what you store actually is the string that you want to store followed by this null character. So 

the null character sort of signals that look the portion of interest has ended. And indeed, the way 

everything happens that character arrays is not using the defined length of the array, but rather 

the idea that only everything until the null is a part of the actual string and what comes later is 

supposed to be ignored. 

So, in fact you will see that when you are processing character strings stored in character arrays, 

you do not really talk about the length because the length is never specified explicitly. So you 

just process until you find the null character. 

(Refer Slide Time: 5:09)  

 



 

Now you can create character arrays with initialization. So for example, you might write char 

n1[20], so you are allocating an array of length 20 and in which you are storing “Ajanta” and you 

are allocating an array n2 without giving the size in which you are storing “Ellora”. These 

definitions are analogous to the definitions that you have seen say for defining arrays of integers. 

The initialization form for character strings is slightly different you do not need to, you do not 

enclose individual characters in braces, but you can just put up character strings.  

So, how does this work? So n1 will be created with length 20 and it will be initialized as follows. 

So A will be put, capital ‘A’ will be put in n1[0], ‘j’ will be put in n1[1], the next ‘a’ will be put 

in n1[2] and so on. So ‘A’, ‘j’, ‘a’, ‘n’, ‘t’, ‘a’ will be stored in array elements n1[0] through 

n1[5], but that is not all, in n1[6] the null character will be stored. So this is this as I said this is 

just according to the protocol that we talked about earlier. And the elements n1[7] through 

n1[19] the remaining elements of this array “Ajanta” will not be initialized and it is expected in 

fact that if you are going to process this array these elements will not be looked at, so only the 

elements until the null character will be looked at.  

n2 will be created of length 1 plus the length of the string “Ellora”, the length of the string 

“Ellora” is E-l-l-o-r-a, 6 plus 1, so 7 the size of n 2 will be 7. And it will also be initialized to the 

string “Ellora” followed by the null, null character. So just to draw a picture, n1 will look like 

this, so this will be index 0, this will be index 19, and then in n1, we will store A-j-a-n-t-a and 

then this null character, so this is 0 1 2 3 4 5 and 6 the null character is stored.  



n2, because the length of n2 is not given, n2 will be created so that it uses the minimum length. 

And so what will it look like? It will look like E-l-l-o-r-a and then the null character, so this 

requires 7 characters and in fact exactly 7 elements will be allocated. So element 0 through 

element 6. And I should point out that the syntax n1[20]=“Ajanta” looks like an assignment, but 

that is not true you cannot, you cannot use this as an assignment, you can only use it as an 

initialization.  

You can assign individual elements of the array, so you could write n1[0]=’a’, n1[1]=’j’, and so 

on. But assignments will be one element at a time and this feature of assigning a lot of elements 

simultaneously is reserved only for initialization.  

(Refer Slide Time: 9:22)  

 

So we have declared arrays and maybe we initialize them, but we surely want to read data into 

arrays, so this is the first way in which we are going to be able to read data. So for example, we 

have a character array ‘buffer’ of length 80. Suppose it has been defined as shown here, the first 

way to read into it is to you cin greater than greater than our standard mechanism. And this for 

the purposes of reading into character arrays works in the following manner. So it reads one 

word and what is the word? Well, it is anything which is terminated by white space, white space 

is a space character or a newline character, tab character so any of these appears then the word 

will be considered to have ended. So whatever that one word was typed in by the user will be 

taken and will be stored into this array buffer from the beginning and it will be terminated by a 



null character. So suppose the user types “C++ is nice”, so there is C++-space-is-space-nice and 

after that nice say there is a new line.  

If you remember you have to hit a new line before the computer actually starts looking at what 

you typed. So say here you hit a new line, so what happens in this case? So in this case as we 

have said one word is read, so the first word is C++, so that C++ is read so three characters are 

read and they are stored into buffer[0], buffer[1], buffer[2] and following them the null character 

is stored.  

Now cin>>buffer does not mention the length of the buffer because if you remember the name of 

the array is only the starting address, so this is needed of course you need to know where to start 

putting in the data that you are just reading. But there is also problem here, so if the user types 

more than 80 characters, then this will cause an index out of range error. C++ will attempt to 

store whatever you typed into say index 80, 81 how many over characters you need and that will 

cause an error.  

So, what should you do? So, we will have a more safer way to read, we will show that all in a 

minute, but the standard idea is to just allocate a large enough array or the simple idea I should 

say. So quite possibly, if you want to write a really good program you should probably not be 

doing this, this is sort of a quick, this is a way to quick, write a quick trusting program. I should 

also mention that the command cin>>buffer works only for character arrays.  

In fact, buffer is constant, so normally cin>> is supposed to have a variable after it. So normally 

if you type any symbol that symbol had better be a variable, but for character arrays there is a 

special case made by C++ so that it is interpreted as put whatever is read into this array starting 

from the 0th character. So if it is not a 0 character, if it is not a character array however, then 

C++ does not allow you to read things in this manner, so that will actually cause an error, say 

buffer is an integer array then you write Cin buffer would cause an error.  



(Refer Slide Time: 13:40)  

 

Now here is a different way to read into character arrays, so again we have our same definition 

char buffer 80, the safe way to read into it is this we say cin.getline(buffer, 80), here you can 

notice that we are specifying the length, so C++ will actually make sure that the reading does not 

happen beyond the array boundary. So this will read a line and this time it is not terminated by 

white space, but it is terminated by a new line, and if the line is very long then C++ will only 

pick up the first 79 characters.  

So whatever is picked up will be placed in buffer and it will be followed by the null character. So 

this is safe because you do not attempt to write beyond the end of your allocated region and 

another difference between this and what we had earlier is that the line that you read may contain 

spaces. So, if you want to get in spaces into what you are reading this is the way to do it. As an 

example, if the user types “C++ is nice” as before and again after nice there is a new line so the 

computer starts processing it, this time that entire text would go into the buffer followed by the 

null character.  



(Refer Slide Time: 15:20)  

 

 

Printing char arrays is simple, so if you have a char array again the same char array, then say you 

somehow put data into it, we have seen one way of the putting data which is to read into it, but 

there could be other ways which we will see soon. And I should just point out, that the way you 

put data into the elements of any array is the same, so I can put data, I can make assignments to 

char buffer[0], so to buffer[0], buffer[1] just like I make assignments to the elements of an any 

array.  

So suppose you have assigned some value into buffer and you have done it in the right way 

which is that the string that you have stored has a terminating null character, so if that happens 



and then you can write cout<<buffer. So this would push the content of buffer onto the screen. 

And how much content? Well everything until the null character. So, for example, earlier be 

initialized n1 to be “Ajanta” and n2 to be “Ellora”. So if you write cout<<n1, then “Ajanta” will 

be printed because as it is said over here everything until the null character is to be printed. And 

for this it is important that your buffer actually contain the null character, if it does not contain 

the null character then C++ will just go on printing whatever there is after that address, so again 

in a sense this is an unsafe, slightly unsafe mechanism, but it is not that unsafe because it is in 

your hands as a programmer to make sure that it contains the null character.  

The length of the array is not important because only everything until the null character is going 

to be printed. And I should also point out that if buffer is an array of a different kind, then what 

would get printed, would be the address of that array because as you may remember in general 

the name of an array stands for the address, the starting address of that array. So here when I say 

cout, so this is something special intended for char arrays.  

(Refer Slide Time: 18:08)  

 

Now, how do you process character arrays? So we are going to do a few examples of this and the 

general principle however, is that the array length is ignored and instead we process all the 

elements till we find the null. And it is expected that the array will contain a nulll if you are 

going to do this for processing. And this is the most common idiom that we do not really keep 

track of the array length, but we process everything until the null character.  



(Refer Slide Time: 18:46)  

 

So, let us write a very simple program. So this program is going to read in a name from the 

keyboard and we are going to count the number of letters in the name. So here is the program, so 

what does it do? Well first it defines this array name of length 80 to store whatever you are going 

to read, then it prints out a message saying “please type your name”, well for short it is just 

saying name.  

And then I could have used the safe variant but just for simplicity and compactness I am using 

the unsafe variant and this variant will read the first word. So whatever you type, delimited by a 

white space will go into name. And then the next, the next line is just going to print that out, so it 

is going to first print the message you typed whatever and then whatever you type the first word 

from it will get printed, the first word will be taken and only the first word will be taken into 

name and only that will be printed.  

After that we are going to search through the name array, this search is sort of similar to what 

you have in other arrays, but it is different in the sense that you are not going to go, you are 

going to start at 0, but you are not going to go till the end. You are going to go only until you 

find a null and this is the body of the while and in the body you are only going to increment L. 

So as a result after this entire code executes, L will be the index of the null character or since our 

counting starts at 0, L will be precisely the length of the name. So yeah, so that is what got 

printed over here in the last, in the last bit.  



(Refer Slide Time: 21:08)  

 

So here is a quick exercise for you, write a program that reads a word and prints its reverse. So 

just to clarify what you are expected to do, you first find the length of the word using what we 

just saw, and then examine the characters in the word from the last character coming back. So 

again, now this is not, the second part is sort of standard array stuff, it does not use this 

convention about the null character or anything like that. But anyway, so the first part does and 

so do write this program.  



(Refer Slide Time: 21:45)  

 

So, what have we discussed so far? So he said that text stored in an array of char, the length of 

this text is not explicitly stored and this is, this is not a, this is not a rule as such, it is just a 

convention but it is a very-very stringently followed convention. After the last real character, a 

null character or the ASCII character with value 0 is stored. Again this is also a part of the 

convention.  

And sometimes it is this last null character is called the “sentinel”, “sentinel” means guard so it is 

sort of guarding the actual text that you have stored and it is standing at the end and guarding it is 

sort of. So next, we are going to look at functions that operate on character strings and also 

something called character string constants, so we will take a break.  


