
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture No. 16 Part- 4

Array Part-2

A function to sort an array

Welcome back in the previous segment, we saw how an array could be passed to a function.

(Refer Slide Time: 0:23)

Now we are going to use those ideas to build a somewhat more elaborate function. So this

function is going to sort an array, okay.

(Refer Slide Time: 0:33)

So the input is an array containing numbers. The output, well, the output is going to be

present in the same array and you can think of the goal as being to rearrange the numbers so

that they appear in non-decreasing order. So as an example, suppose the array initially is 35,

12, 29, 70, 18, 29. Then at the end we want this desired order, so 12, 18, 29, 29, 35, 70.

(Refer Slide Time: 1:02)

Okay. So how do we do this? Well before we say how do we do this, I should point out that is

an important operation. And Chapter 16 will give a clue as to why this is the case. So will,

will, we are going to do that, so we will just wait until then. There are many algorithms for

sorting and Chapter 16 we will discuss a clever and fast algorithm. Here we discuss a slow

but an easy to understand algorithm called Selection Sort.

(Refer Slide Time: 1:33)

The basic idea of Selection Sort is, find the largest number in the array. Then we exchange it

with the element in the last position. Now we have made progress, why? Because the last

position now contains the largest number which is really what we wanted the last element of

the array to indeed contain the largest and we have placed it there.

So what happens now? We just have to do the same thing for the first N-1 elements. So we

apply the same idea to the first N-1 elements of the array, where N is the length of the array

then to first N-2 and so on.

(Refer Slide Time: 2:24)

Okay. So a primitive step in all of this is finding the index of the largest element. Well we

said, we want the largest element, but actually it is more useful to find the index of the largest

element, where is that largest element present in that array.

(Refer Slide Time: 2:46)

So here is here is a function which does that, so this function takes as argument an array well,

an array name, but as you know, it is the starting pointer to the start of the array and the

length of the array. But we can think of A as an array name. As we saw that when the

parameter passing the values are copied, it really behaves like the name of the array.

This function is going to return the index of the largest element in A. So what is the invariant

for this iteration? Well,so for the ith iteration the invariant is that maxIndex which will be a

variable, that we will define soon, will equal the index of the largest element in A0 through i-

1, okay. Or I should say A[index], if there are multiple it will be one of the, a multiple

elements which are maximum, it will be the index of one of those elements.

So we start by setting i equal to one and maxIndex equal to 0. So this makes the invariant

hold. Why? Because if i equals one, A0 through i-1 is just A0 and maxIndex is indeed the

index of the largest element that there is only one element A0 and its index is find index of

the largest element in A, kind of trivial, but will do.

Now we are going to increase i until L-1 and as we increase i, we want the invariant to hold.

So this is like our Max so far, but instead of keeping track of the Max, we are keeping track

of the index. So A[maxIndex] is Max so far and if this is smaller than the new element, then

we are going to set maxIndex equal to i, okay. So either way maxIndex will point to the

largest element or be the index of the largest element and so at the end we return maxIndex.

I should note that in doing this the number of comparisons needed is going to be L-1. So for

each value of i going from one to L-1. So L-1 comparisons will be needed, okay. We are,

later on going to estimate the time taken for this and this value will be needed over there.

(Refer Slide Time: 5:26)

Okay. So what is the main function and the main program? So the main function is the

function selection sort. It again receives the name of the array which is the address of the

zeroth element, but which we can pretend is the name of the array and because the name of

the array means the same thing and the length of the array. Then we are going to start with N,

remember we said that, we are going to place the largest element in the Nth position, then the

second largest element in the N-1th position and so on, so that is what is loop is for.

We first calculate maxIndex which is posOfMax(A,i).If you remember posOfMax was going

to return an index of the maximum element in the array A of length i. Now our array A

actually has length N. In the first iteration this will be N, but in the subsequent iterations this

will be smaller. But if you remember according to our discussion in the first iteration, we

wanted to find the largest element in the entire array.

In the next iteration the largest element was already in position N. So we wanted to find the

largest element in the first N-1 positions and that is exactly what this statement will do.

Because in the next iteration, i will have come down one step, so this will be N-1. So this is

exactly what we want, okay.

So posOfMax, this function thinks that the array only has i elements, but that is okay. So it is

going to only tell us the index of the largest element in the first i elements, that it is going to

consider from this array.

(Refer Slide Time: 7:40)

Now we want to do the exchange, we want to exchange the i-1th element with maxIndex

okay, i-1th element.

(Refer Slide Time: 7:58)

Well in the ith iteration we are going to consider i elements, okay. So this is element 0, 1, 2

and this last element is i-1. So we found some maxIndex over here and we are going to

exchange the element over here and the element over here. So what this will do is, we already

before starting would have had the correct values over here, okay, the largest values over

here. Now the largest value in this entire region is going to be pushed to this point and so the

good region will extent a little bit more, that is what this is doing to do.

So we need to do this exchange. So how is this exchanged done? Well the exchange is simple

enough.

(Refer Slide Time: 8:43)

We copy the value at maxIndex to maxVal.

(Refer Slide Time: 8:47)

So this is maxIndex, so this value goes into this variable called maxVal, okay. Then we copy

the value in i-1 into this position.

(Refer Slide Time: 9:09)

And finally, we copy the value over here into this position. So the exchange is done okay, so

that is it, that is our selection sort.

(Refer Slide Time: 9:20)

So in our main program, we will create this array and then we will call, we will call make us

call to sort. Yeah, so we will print it, but I will show that printing step when we do a

demonstration.

(Refer Slide Time: 9:36)

Okay, all right. So before we do the demonstration, let us review what we have done a little

bit. So this is our function and let say, let us try to count how expensive, how much time this

whole thing takes. So we said that posOfMax our function will perform L-1 comparisons

where L is the length of the array passed to posOfMax, okay. So this is what I am talking

about.

(Refer Slide Time: 10:11)

So this red part, this red part will require me to do L comparisons, L-1 comparisons. If the

array has size L. So if the array has size i or if this argument is i, it will do i-1 comparisons.

The first iteration it will do n-1 comparisons, the next iteration it will do n-2 comparisons, n-3

comparisons and so on, okay.

(Refer Slide Time: 10:41)

So selSort calls posOfMax for L equals N, N-1, 2, so the number of comparisons it does is N

+ N-1 all the rate down to 2 so it is N+2 times N-1 upon 2, okay, so just about N squared by 2

comparisons. So even if I count the number of comparisons, selSort will do about N squared

give or take a factor of 2, and N square turns out to be not such a fast algorithm you can do

far fewer comparisons and we will see that little a bit later, okay. But any way, this algorithm

will sort correctly and now we are going to see a demo in which that sorting is going to

happen, so let us take a look.

(Refer Slide Time: 11:30)

So this is our function, okay. So this is our code for posMax, I have added a print statement

because I would like to print the array at different points, so we will see there this is going to

be used.

(Refer Slide Time: 11:49)

So let us just take a look at the selSort function, okay. So I have modified it a little bit and the

modifications are store, shown by these stars. So what I am doing is at the very beginning, at

the beginning of the each iteration, I am going to print out the entire array. So this way you

can see how the array is going to change and in, to make sure that, okay, so then this

posOfMax is going to be called and I am also going to tell you where that index is, what

index was reported. So again, we can check how posOfMaxis working, how the entire thing

is working. And I do not want the iterations to go of very fast. So here I am going to just have

a dummy variable, okay, and I am going to read a number into it, I am not going to use this,

but this will just force C++ to stop at this point and wait for me to type in something so that I

can continue. So the value of the dummy variable is not important over here. I will just put in

so that I can force C++ to stop, okay? So the rest of the code is exactly the same and at the

end also, I am going to print out a message and I am going to print out the value of the array,

okay.

(Refer Slide Time: 13:10)

So we had the print function at the top and that simply prints out the value of the array, value

of all the elements in the array. So let us execute, compile and execute this. So let us run it.

(Refer Slide Time: 13:20)

So this is the printout at the beginning of the first iteration of selSort. And then it, so this is

the, at the at the time when nothing has been done, we are just beginning the very first

iteration. And we have issued Max pos and it says that the maximum value is found in index

three. Let us check if that is true?

So 0, 1, 2, 3, 70 is at index three and it is indeed the maximum value, so Max pos has

behaved correctly. So let us just type in some nonsense value so that the program will

continue.

(Refer Slide Time: 14:11)

So now you see that the second iteration is being executed and at this point 70 has already

gone to the end because of our exchange and we have also issued the call to one more Max

pos. And that is limited to this region. And in this Max pos is found at index zero which is

indeed true. So again let us continue okay.

(Refer Slide Time: 14:39)

And now 35 has gone till the end and now we are finding that Max pos is found at index two,

0, 1, 2. Yeah there are two 29’s, but it has picked one of those and so, and it is indeed at this

position there is indeed the maximum, A maximum value.

(Refer Slide Time: 15:01)

So let us again making go forward, so this time 29 has gone till the end. Well we do not know

whether it was exchange or not, but presumably there was an exchange. But now again, a

maximum is found at this position, okay.

(Refer Slide Time: 15:18)

So let us again type 0, so it has gone forward and this time it is really searching within this

region Max pos is being found within this region. So the largest value is over here and so

index zero is returned by Max pos and so at this, sorry, let me type 0.

(Refer Slide Time: 15:36)

(Refer Slide Time: 15:40)

So at this point the function is returning at after returning to main program 12, 18, 29, 29, 35,

70 is printed and it is indeed correctly sorted.

(Refer Slide Time: 15:58)

Alright. So posOfMaxwill perform L-1 comparisons where L is the length of the array passed

to posOfMax, okay. So we saw all these things, okay.

(Refer Slide Time: 16:10)

We saw that demo and we can do a variation. We can express selsort as a recursive program.

(Refer Slide Time: 16:18)

So I am going to leave this, I am going to show you the code, but I am going to leave this as

an exercise for you, okay.

(Refer Slide Time: 16:28)

In fact, I am going to put out the code as well and you can run it yourself and check it. So that

essentially concludes this lecture. And so I would like to make some remarks.

(Refer Slide Time: 16:47)

And in this lecture we saw what sort of happens behind the scenes when we access arrays.

And we said what does an array name mean? And what happens for the indexing operator?

And how do you pass an array to a function. And we said that when you pass an array to a

function, it does not copy values, but it merely copies the address of the zeroth element. And

if you want to access the entire, if you want the function to access the entire array you should

tell the function how many elements the array has, so that also must be passed.

Writing functions on array is useful and this is definitely a skill that you must master.

Selection sort runs in time proportional to the square of the number of elements being sorted

and in Chapter 16 we will discuss faster algorithms. I will stop here, but I will urge you to

solve the problems at the end of Chapter 14 and of course, read, read Chapter 14. Thank you.

