
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Lecture 13 Part 1 – Program Organization and Functions (Introduction)

Hello and welcome to the NPTEL course on An Introduction to Programming through C++. I

am Abhiram Ranade, the topic for this lecture is program organization and functions and the

reading is from the chapter 11 of the text. So the central question that we are going to answer

in this lecture sequence is how do we write large programs.

(Refer Slide Time: 0:45)

Now designing or building anything large becomes easier if we can think of it as being made

of small parts. So for example, a book is made of chapters and if we say that look, let we

concentrate on chapter 1 now then concentrate on chapter 2, then the whole thing becomes

easier to think about.

Say you are designing some object like a car, then a car has many subsystems and you do not

design everything together, you do not have everything in your mind at the same time. But

you say that look, let me now design the engine, let me now design the electrical subsystem

and we sort of break it up into small pieces and work on the pieces one at a time or at least

one person works on a piece at a time. For programs such smaller units are functions. We

break up the overall requirement into separate, small, somewhat independent computations

and code up these separate parts as separate functions.

(Refer Slide Time: 2:10)

Now we are going to think of a program as being made up of functions and we have already

said that even if our main program which was which has been looking different from

functions so far is actually also just a function. So let me make that clear right away. In C++,

the standard way to write the main program is to write it as a function. The function must be

named ‘main’ and its return type must be int. Why is it int? That is really for some historical

reasons. The main program doesn’t really returning anything but for some historical reasons

it has stuck that its return type must be int.

Ok and for now the main program is not going to take any arguments. So instead of

main_program and a body containing appropriate statements, in C++ you really should be

writing int main(), so main which does not take any arguments and the body containing

whatever statements.

Ok, simple CPP is just doing a translation for you, ok so when you write main program

simple CPP translates this main program into this text. There is a feature in C++ called

preprocessor macros which are being used over here in case you are curious but for this

course you do not need to understand preprocessor macros but if you are curious they are

discussed in the book.

Ok, so why did we do this? So simple CPP provides this feature so that on the very first day

you do not need to understand what is a function, what are arguments to a function and why

is it int or should we care that it is an int. We did not want you to ask all these questions or

we did not want you to worry about all these questions and therefore we made this thing

called main_program and which we convinced ourselves the simple CPP was translating into

what is actually required.

Ok, but now that you know functions or by the way the function main is allowed not to have

a return statement, so this is the concession that is given for main because the value returned

is not of any consequence anyway, so we have not been returning the value inside inside the

main program.

Now that you know what the thing is really required in C++, we are going to stop using this

phrase ‘main_program’, so we will write int main and then the body and this is how we will

write our main program as a function whose name is main.

Your compilation procedure will still work if you are using an IDE. If you hit the compile

and run button or just the compile button, that will work. Ok, if you are using S++ command

under Linux that will still work, ok and I will encourage you to use int main because after all

that is sort of what will be available if you go outside simple CPP and anyway it is not really

a major convenience at this point to be able to write main program.

(Refer Slide Time: 6:15)

Ok, now that you understand what functions are, ok so let us come back to the question of

dividing code into functions. So, why does it help? Ok, so if you if you have a lot of work to

do you would like to get many people to do it. So, similarly if you want to write a big

program, presumably you want to assign it to many people and certainly if you give different

functions to different people then that is easier to, that makes it easier for people to

collaborate.

Another very interesting feature of functions is that they are self-documenting. What do I

mean by this? The function name, parameters give clues as to what the function is doing. If

you just write the code inside your main program, then there is no such clue. So, going back

to the functions that we had if we write int gcd, then the very fact that we have a name over

here tells us that look something like a gcd is being computed and ‘m’ and ‘n’ are there, so it

says that look, ok maybe the gcd of 2 numbers is being computed something like that.

(Refer Slide Time: 7:22)

Ok and here the things are even clearer, ok that a tree is being drawn or something like

something is happening to something involving a tree. Even that is better than just putting

this kind of a code inside your program. Ok and of course if you are going to recurse,

functions are of course essential but even if you are not going to recurse just the fact that

there is a name over here forces you to say something about what is being done. Of course,

all this works only if you are choosing the name nicely and we hope that you choose the

name nicely, we hope that you choose the names of the parameters nicely.

So for example, you really could say over here int level not just ‘l’. I have been using level

over here because I want to put this inside a slide and inside a slide if you put big names then

it would not fit in the slide but really good programmers will use much longer names. So, you

could even say instead of rx, you could say root x if you want or x root whatever whatever

style you prefer. And when you write a function there is a natural expectation that you should

write the pre-conditions and the post conditions.

So we have written pre-conditions and post conditions here in a very compact manner and

here in a little bit more descriptive manner. In fact, this last comment says a little bit more as

to what area what specific area the picture is going to fill out.

So what happens is that in the long main program it may not be obvious as to where as to

where and how to put the comments, whereas in a function there is a proper place for it, there

is a natural place for it, ok and I cannot overemphasize the need to document your code. As I

said earlier, your code will be written will be read by you later on and you would want to

know what it does and believe me you will forget why you wrote some piece of code and of

course if somebody else is going to read the code, they will need to know why you are

writing, what you are writing and so functions say that in this small piece of code this is what

is going to happen, ok. The names implicitly say what is going to happen and furthermore if

put in comments giving the pre-conditions and post conditions, great.

Functions also allow you to adopt a strategy. Write a little bit of code, test it, write some

more, so basically you can test your program one function at a time and you do not have to

write the entire program and then test the whole thing. That is really tricky to do because you

will not easily know where the error is. If you write a small function and it makes an error, it

is much easier to fix the error. And finally a function is a good way to package and share a

code.

If you have written some code and you want to give it to someone else, you can give them a

file containing a function which contains the code. Ok, so a function is sort of is a nice

wrapper into which you can put code. So in some sense a function is a logical unit of code,

the physical unit of code. The physical units are files. If you want to give anything like code

to anyone, you have to give a file and of course if that has to make sense it had better it is

nice to put a function in it rather than sort of code by itself does not make sense.

Code just a loop by itself or just a declaration by itself does not make sense whereas a

function is kind of a nicely packaged piece of code but that is sort of logical packaging.

Physically you have to give a file. So, that raises a bunch of questions.

(Refer Slide Time: 11:39)

So, suppose several people write different functions of the same program. It is convenient for

each person to use a different file and so the question that is raised is, how will a function in

one file call a function in other files? So, we are going to answer these questions fairly soon.

(Refer Slide Time: 12:07)

Now you may be thinking at this point, look in this course am I going to be writing large

programs? Or is this discussion about large programs really not relevant for this course? Ok,

so some answers are due. So it is true that you are not going to be writing very large

programs in this course. So any program that we ask you to write will be at most 150 lines.

Most of the time they will be fairly short, so maybe there will be 20 lines. A 20 line program

does not, can fit in the file and does not, it probably does not need to be divided into small

functions. Ok, on the other hand a 150 line program should be divided.

Ok. So, you do not write 150 lines as a main program, it is too long, it is too hard to figure

out what is going on. So you break it up into pieces and the maximum size recommended for

the main program or for a re-function is less than 20 lines. Why 20 lines? Because 20 lines

you can sort of see at a glance. Anything bigger you sort of have to move your head around

or you have to at least move your eyes around and if you are not seeing things at a glance

then it is harder for you to sort of keep everything in your mind.

The bigger the chunk that you have to keep in your mind the harder it is for you to work with

it. So if you can break things into pieces which are about 20 lines then that is great. Yeah, so

you are more likely to understand that code fully and write it without errors. So again, you

may notice that I am really worried about making errors when I write programs. And that is

for two reasons, the first reason is that if I want to write program that I write a program that I

give to someone else, I want it to run correctly because I know that that person might be

using that program for something really important and I would be failing in my duty if I if my

program does not work correctly.

The second reason I am worried about errors is that experience has thought me that I will

make errors when I write programs and I should be prepared for that, I should be I should

take as many precautions as possible and I should not become proud that oh, I am going to

write this program without errors in the first shot. Sorry, it does not work like that for most

people, so be a little humble, write the program, write it very carefully, write it by cultivating

the style which prevents you from making errors as much as possible. Ok but anyway be

willing to test it and so yes, I will be pre-occupied about making errors and I will be

suggesting strategy so that you do not make errors and breaking things into small pieces is

one such strategy.

Actually, many experienced programers even recommend smaller size for functions longer

than 20 lines. Ok, yeah, so now how do you break code into small functions? So, that is not

quite what we are going to talk about here, ok that is something that we will consider when

we write large programs, when we ask you to write programs. At that point we will suggest

how to break things into small pieces. Ok, the consideration this time is a little bit different.

Ok, so this is this is the second consideration as to why we are talking about large programs.

(Refer Slide Time: 16:14)

So as we said it is ok to put a 150 line program into a single file but not larger programs and

again we may say that look, ok so we are not going to write bigger than 150 line program, so

why are we bothering? In fact, yes, the novice IDE of simple CPP requires you to only have a

single file program.

Ok, the first simple CPP IDE on the other hand does allow multiple files, but we are not

going to discuss it. Ok, so then why are we talking about all this? Here is the point. When you

write even your simple 15-20 line program, you will be using code which is written by others.

So effectively, what you call your program is going to be a large program. Effectively, you

are cooperating with others who have written the simple CPP functions for you. So your

program really contains all those simple CPP functions effectively. The math library

functions such as square root, sin, cos whatever that you are using have been written by

somebody else and they have to be a part of your program if your program is making calls to

square root. So in some sense you should know how a large program works, how a program

which exists across several files, how do you put that together? And that is really what this

part is about.

So you are collaborating with others without knowing it and you are using functions from

many files, so you really should know how all that works. So to this extent even though you

are not writing large programs what we discuss will be relevant to you.

(Refer Slide Time: 18:15)

Ok, so what have we discussed in this last segment? We have said that the main program is a

function and then we have articulated the need for splitting a program into many functions

and we have articulated the need for splitting a program into many files. Next, we are going

to see how to split the programs into files and how your program will effectively use code

written by others and finally, we will see how you can use C++ without simple CPP. So we

will take a break.

