
An Introduction to through C++
Professor Abhiram G. Ranade

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Lecture No. 1 Part - 2
Introduction

Repeat, input-output, and some basic commands
In the last segment, we discussed some general information about the course, how to install

cpp and we wrote a programme for drawing a square.

(Refer Slide time 0:33)

So now, I am going to show you a better way of drawing a square. So here, you can see that,

we have the same first 3 lines but instead of typing in forward(10), right(90) several times, I

have put it inside a ‘repeat’ statement, a so called repeat statement. So as you can see, after

repeat there is four which tells you how many times to execute what is in the braces

following the repeat.

So basically this statement is going to execute forward(10), right(90), 4 times and after that it

is going to wait for 10 seconds. This will also draw a square but it is a nicer way to draw a

square because I do not have type it so much. Imagine if I wanted to draw a 100-sided

polygon, I would have had to type things 100 times. But with repeat statement, I can just say

repeat 100 times.

(Refer Slide time 1:25)

Well, what does repeat statement in do in general? And what does it look like? Its form in

general is going to be this: ‘repeat’ followed by parenthesis inside which there is going to be

a number, let us call it x and then there are these braces inside which there can be as many as

statements as you like and collectively let us call these statements yyy. So what a repeat

statement does? Well it causes these yyy statements inside the braces to be executed x times.

So we already saw an example, we had x equal to four and yyy was forward(100), right(90).

So those two statements were executed 4 times. In general ​whatever is inside those braces is

called the ‘body’ of the repeat statement and each single execution of yyy is called the

iteration. So this repeat statement causes x iterations of the body yyy.

(Refer Slide Time 2:29)

Now, we can use the repeat statement quite nicely to draw a polygon. So, here is the program

and we will execute this later, but let us just see this. So it begins with include<simplecpp>

and main_program as before, then we start up turtle sim and now there is a different

statement. So this statement is a ‘cout’ statement, its form is cout << ”message”.

Now cout over here can be thought of as a command but you can also think of it as the

screen. So this statement will print whatever you type after those less than less thans on the

screen. So in this case you typed “how many sides?”, so this message how many sides will go

on the screen.

After that, another statement that we have not seen: ‘int nsides’. int nsides is a rather

complicated and interesting statement. So first of all, it tells the computer “please reserve a

cell in memory for me in which I am going to store some integer value”. How to store that

value? I will tell you a little bit later, but what we are doing over here is we are reserving a

cell in memory, not only are we reserving, but we are going to tell the computer that look

from now on, if I use the term ‘nsides’ you should treat it as referring to this cell. So

essentially, I am giving nsides as the name for the cell that I just reserved.

Now you can choose the name as you wish, ok? We will see that in some later lecture and I

just want to point out over here that ‘int’ is an abbreviation of integer so you are telling the

computer that I am going to store an integer and instead of writing down i-n-t-e-g-e-r, you

just type int which is the abbreviation.

After that, there is another new statement ‘cin >> nsides’. Well what does this statement do?

Well, it commands the computer to wait until the user types in a value from the keyboard. So

the statement asks the computer to wait until a value is typed. So the user will see the

message ‘how many sides’ and therefore, the user will type a value. So this value whatever it

is, let us the user types a 10 that value 10 will come in into the computer and the cin

statement will throw it into the cell ‘nsides’ which you just reserved.

So think of ‘>>’ than as arrows and think of cin as a representing the keyboard. So this

statement is going to cause a value to flow from the keyboard to the cell in memory called

‘nsides’. Of course, this statement will cause the program to wait until you actually do the

typing. If you do not type, then the program will just wait so you should type.

After that we have the ‘repeat’ statement, but now the repeat statement has gotten more

interesting. We do not have a number inside the parenthesis, but we have the name of a cell.

So what does this mean? So it says repeat as many times as whatever is the value that is

contained in the cell nsides. So we just said that the user might have typed 10 when ‘cin >>

nsides’ statement executed. So if 10 was sitting in nsides then the loop, the body that is going

to be following will be repeated 10 times.

So what is in the body? Well we are going to go forward 100 and now we are going to turn

right but instead of turning right by 90 or some fixed value, we are going to turn right 360

divided by nsides. What is this 360 divided by nsides? Well it is a mathematical expression

and you are instructing the computer to evaluate this mathematical expression. So, you are

telling the computer divide 360 by whatever is contained in the variable nsides.

So, if we type 10 then nsides will contain 10, so as a result of this we will have 36 so the

computer will turn 36 degrees. Notice that if there are 10 sides to a polygon then there are 10

exterior angles, if there are 10 exterior angles, each of which adds to 360 then each angle has

to be 36. So this is exactly the angle that we need in order to draw a decagon. So this is what

this repeat loop is going to do. After that the program will wait for 10 seconds and then the

program is over.

(Refer Slide Time 7:50)

All right, so let us again see a demonstration of this. So this is the same editor and this is the

program that we just saw. So I am going to go to the new program – ‘​polygon.cpp’, which is

what we just wrote. So you can see it is reserving a cell in memory called nsides and these

cells in which we store values are often called variables. And then it is turning right by 360

by nsides and the repeat loop goes nsides times. I put in a wait 5 over here whereas earlier I

had said wait 10 does not really matter.

(Refer Slide Time 8:21)

So, let us compile that programme. So this is polygon, and let us execute. So we have our

turtle, so it has asked us a question, “How many sides?” I am going to respond 10. Let me

just move this so that I can see both. So I am going to type 10, but the statement does not

work just by typing 10, I have to hit a return as well. So now, it ended up drawing a polygon.

Well there is some problem over here, that polygon was little too big and did not fit in that

window we have. Well that is not a big deal. Even if the polygon part of the polygon went

outside, the turtle knows how to come back.

(Refer Slide Time 9:18)

But let us just execute it one more time, so that you can see a full polygon. So this time, when

it says “how many sides?”, let me type 6. So now, it draws a hexagon and you will see that it

has turned exactly the right amount. How did it know how much to turn? Well, it turned 360

by nsides and so in that case it turned 360 by 6 which is 60 degrees. Ok, so we have seen one

more program to draw a polygon and I just now want to point out that there are many more

commands available at our disposal. So we do not have to always turn right we can turn left.

(Refer Slide Time 9:51)

And if you want to turn left through A degrees, we can say turn left A degrees. Well actually

we do not really need that left command, because if we say ‘right(-A)’, then that is really

equivalent, but just for convenience that left command is also provided.

Two additional commands are there - ‘penUp()’ and ‘penDown()’, and these respectively

cause the pen to be raised and lowered. What does that mean? Well the drawing is going to

happen only if the turtle moves while the pen is low. If you raise the pen, if you issue the

‘penUp()’ command, and then move, only the turtle will move, no drawing will be done, so

after that you need to put down the pen again by giving the ‘penDown()’ command, and only

then will any drawing happen (from that point onwards)

You can do mathematical calculations, so for example, you can use the commands ‘sqrt(x)’.

So this is going to cause the square root of x to be computed, and instead of this square root

of x, essentially that actual square root will appear and so, then you can use it directly in your

calculations.

Similarly you can use sine(x), cosine(x), tangent(x) and so on. So here ‘x’ should be in

degrees. In scientific computation it is more customary to use radians, so actually, the

abbreviated forms are allowed. There also are commands for arcsine, arccosine and lots of

useful mathematical functions, so for that, please see the book.

(Refer Slide Time 11:24)

Okay, so some remarks. Now, you can use commands without worrying about exactly how

they do the work. So if I write ‘sqrt(17.35)’, or indeed whatever number, it will get calculated

somehow, you do not have to worry about it. The computer knows already, how to calculate

square roots.

Similarly, when I say ‘forward(100)’, the computer already knows how to move the triangle

forward 100, so you do not have to worry about exactly in which direction it is, and so on. So

that is the point of what happens when when we talk about a command, it promises that it

will do something and you do not have to worry about how that something is actually done, it

will just happen.

(Refer Slide Time 12:12)

So here is a small exercise based on what we have seen so far. So draw a square of side

length 100 as before, but, on top of this, you are to draw a square obtained by joining the

midpoints of the sides of the foursquare. So now, you will have to calculate what the side

lengths of this new square are. So now, you can use Pythagoras’ theorem to determining the

length of the sides of the inner squares and then you will typically need to do a square root

calculation, but you know how to do square roots and so you can use that to decide how

much the turtle is supposed to move.

Here is another exercise, instead of drawing a straight line, draw a dash line say for example a

dash of 10 pixels, then gap of 10 pixels and so on 10 times. So what this will require you to

do, is you will have to raise and lower the pen 10 times, but, DO NOT, and I emphasize, DO

NOT write these commands 10 times, put them inside a repeat statement. So that is that is

really a very important part of saying that I know programming. One of the major things

about I know programming is that I know how to use repeat statements.

(Refer Slide Time 13:55)

So what have we discussed? We discussed the ‘repeat’ statement, which is a really important

statement which causes repeated executions of some statements which are in its body. ‘cin’

and ‘cout’ statements also we discussed, and these can be used to read from the keyboard and

to type messages to the screen. C++ has commands to compute mathematical functions as

well as lift the pen up and down. So, we will stop here for a short break.

