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So, in this lecture, we will continue with our discussion on solution of few problems, and 

also introduce a few concepts, and discuss them as well. 
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We will begin by discussing properties of processes with independent increments. A 

problem related to this. We will consider X of t to be a process with stationary 

independent increments and we assume that t is greater than or equal to 0 and x of 0 is 0. 

We are asked to show that expected value of X of t is mu t. variance is sigma square t 

and variance of X of t minus x of s is sigma square t minus s and covariance is given by 

this. Actually, the data on mean and variance are given at X t equal to one. Expected 

value of X of t is mu and sigma square is variance of X at t equal to 1. 
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Now, let f of t be equal to expected value of X of t. So, f of t is expected value of X of t 

minus x of 0. Expected value of X of 0 is taken to be 0. Therefore, f of t plus s is x of t 

plus s minus x of 0. By adding and subtracting X of s, I can rewrite this as x of t plus s 

minus X of s plus X of s minus X of 0. The expected value will therefore consists of two 

terms. First is expected value of X of t plus s minus X of s and the second term is x of s 

minus x of 0. 

Now, if you look at the first terms x of t plus s minus X of s, it is nothing but x of t minus 

X of 0, because the process is stationary increments so this is f of t and this is f of s. 

Therefore, we are getting the functional equation f of t plus is t plus s is f o f t plus f of s. 

Now, a solution is f of t c t for this. We need to find c, but for that we have the value of f 

of t at t equal to 1 which is expected value of X of 1 which is mu. Therefore, expected 

value X of t is mu t. 
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Now, we define g of t as variance of X of t, where g of t is nothing but variance of X of t 

minus x of 0. I can write it as g of t plus s variance of X of t plus s minus X of 0. Again, I 

add and subtract x of s and since process increments are independent, I can add the 

variances in this form here and since the process has stationary increments, the variance 

of X of t plus s minus x of s is nothing but X of t minus x of 0. That leaves to the 

functional equation g of t plus s is g of t plus g of s. Again, the solution needs of the 



 

forms g of t c t and c transfer to be sigma square and therefore variance is sigma square 

into t. 
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Now, lets begin by assuming t is greater than s and if we find variance X of t, we can 

carry out this calculation and show that variance of X of t is sigma square t minus s. That 

is, variance of X of t is that and variance of X of t minus X of s we have to find out that 

is the auto covariance. If we use square and carry out this, we write this as X of t minus 

X of s minus mean of that whole square and rearrange this as X of t minus mean of X of t 



 

minus X of s mean of X of s and if you carry out this expansion, we can show that 

variance of X of t minus X of s is given by this. 
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 Therefore, covariance of X of t comma X of s we can obtain this expression which 

simplifies now to be sigma square s and since we assume t greater than s, it follows that 

covariance of X of t comma X of s is sigma square minimum t comma s. 
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In study of failure of randomly vibrating systems, we consider problem of fist persist 

time and extremes of random processes over a time duration. Now, we consider a 



 

problem related to those developments. We consider X of t to be a stationary Gaussian 

random processes with 0 mean and power spectral density function which is of this form. 

That is sigma X square by square root of 2 pi alpha e raise to minus omega square by 2 

alpha square where omega is from minus infinity to plus infinity. You can recognize that 

power spectral density has a form of a Gaussian probability density function. 

The problem in hand has several steps. First is determine the auto correlation and cross 

correlation functions of the processes and its derivative. Find the average rate of up 

crossing of level beta find the probability distribution function of time for first crossing 

of level beta. Find the average rate of peaks above level beta. Find the expected 

fractional occupation time above the level beta where a duration 0 to t. Finally, find the 

probability distribution of extreme of X of t over a duration 0 to t. 
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 You need to recall that the quantities that we are seeking are closely related to the notion 

of spectral moments. The process we need is the variance of the process and its first and 

second derivative to answer some of these questions. The power spectral density function 

is given to be this. The zeroth order moment is area under the power spectral density 

function. Now, if you carefully see this excepting term 1 by square root of 2 pi into alpha 

e raise to minus omega square by 2 alpha square is a valid Gaussian probability density 

function. Therefore, area under that curve will be 1. Therefore, this integral is sigma X 

square. 



 

Similarly, lambda 2 will be the second spectral moment which will be proportional to the 

variance. Now, alpha is a standard deviation for that hypothetical probability density 

function. Therefore, this is sigma X square alpha square. Fourth moment is actually 

fourth moment of a Gaussian random variable is 3 into standard deviation to the power 

of 4 so that is what we get. 
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Now, we are asked to find autocorrelation function of the process and it is time durability 

across it is function etc., So, we have the power spectral density function which is given 

here and a fourier transform of this will be of the form that is similar to the characteristic 

function of a Gaussian random variable is 0 mean and that is of this form. 
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So, R x x of tau is this. Now, we are we are asked to find auto covariance of the 

derivative process and cross correlation with in process and its derivatives. We need to 

use this identity process is stationary. Therefore, we need to use this. Expected value of 

X of t into X dot t plus tau is minus d by d tau of R x x of tau and all other things follow 

from that identity. We need to apply this and find out all the quantities that are of interest 

up to the second order derivative. 
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So, if we do that, R x x of tau is this. The first derivative transfer to be this. Second 

derivative is this. This is the second derivative, third and fourth derivative etc., we can 

find out. This is the fourth derivative. This is summary of all the calculations and this is 

auto covariance of R x x of tau. This is auto covariance of x of t x dot of t plus tau. This 

is the expectation and similarly we can interpret all these quantities. 
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 Some of this I have shown here. This is the auto covariance function of the process 

which is this and its first derivative is this. The part of the answer to the list of questions 

that were post. Now, the level crossing statistics that number of times the level beta is 

crossed in that given by this integral 0 to t X dot of t direct delta X of t minus beta d t. 

So, the average rate of up crossing of level beta is given by this and for a Gaussian 

random process this is as shown here and we have evaluated now all the spectral 

moments. So, if we substitute, the answer to be this. 
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 What is the probability distribution function of time for first crossing of level beta? We 

assume for high levels of crossing, we approximate the number of times the level is 

crossed as a Poisson random variable and we take therefore probability of N equal to k is 

given by this and this lambda is the rate of up crossing that we have to determined. This 

is the expression. We need to substitute this into this and we have the probability 

distribution of number of times level beta is crossed. 

Now, the first persist time t f, if you are interested in probability of t f greater than equal 

to capital T, that would mean there are no points in 0 to capital T. That mean the 

probability of n equal to 0 and we have the complete characterization of this Poisson 

random variable and therefore I can get the first persist time. 
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Now, average rate of peaks about level beta, this is the expression that we have derived. 

You have to go back to the previous lectures. This is for a stationary Gaussian random 

process. So, the average rate of peaks above level beta has threequantities sigma 1 square 

sigma 2 square and sigma 3 square. This is the variance of the process X of t. This is the 

variance of X dot of t and variance of X double dot of t we have determined which are 

nothing but the 0 which are second and fourth spectral moments we have determined.  

We need to substitute that into this and get the answer. 
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This s is the covariance matrix evaluated at same time t, we get these numbers and this 

becomes the determinants. We have all the spectral moments and determinant of s. Go 

back to this expression, we have answer to the question that is post. 
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 Expected fractional occupation time above level beta over a duration 0 to t is, this is the 

definition. You can show that the expected value is given by this. This is where only the 

first spectral moment is required. 
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Now, the probability distribution function of extreme of X of t over duration 0 to t. This 

is related to the first passage time as we have seen earlier. We have already solved the 

problem of probability distribution and density function of first persist times and this 

lambda is the parameter we had determined. The probability that x m is less than equal to 



 

beta is same as the first persist time is t f of beta is greater than capital T. From that, we 

get this and this is the answer that we are looking for.  
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So, this completes the discussion on characterizing properties such as first persist time, 

level crossing statistics, peaks, occupation time and extremes of a stationary Gaussian 

random process. One of the questions that often come up in discussions is the possible 

relationship between factors of safety and probability of failure. 
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 This can be explained through simple logic and that is what I am trying to do here. In 

this problem, what we do is, we consider the following situation. In traditional 

engineering practice, uncertainty is in specifying the loads and structural resistance are 

accounted by overestimating the loads and underestimating the resistance. The factors by 

which we over estimate loads and the factors by which we underestimate the resistance is 

calibrated based on experience with performance of existing stock of structures. 
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Now, when we look at this problem with a probabilistic framework ,the question that we 

can ask is, how can we arrive at these factors using theory of a probability? So, what we 

do is to illustrate this, et us consider an idealized situation in which demands on the 

structure and supply of structural capacity are modeled as a period of mutually 

independent Gaussian random variables. The failure event is defined by exceedance of 

load effect over the available capacity. If the tolerable level of probability of failure is 

specified to be P F, the question we are asking is: determine the factors by which the 

expected load and capacity are to be multiplied so that the target probability of failure 

condition target probability of failure is matter. 

Now, we called out the problem is also to extend the discussion on the case when several 

loads act on the structure, like for example dead load, live load, thermal loads etc., How 

do we extend the lotion of factor of safety to such situations? 
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Now, in this view graph, we are showing the probability density function of load effect. 

This is density function and this is the probability density function of structural 

resistance. The expected structural resistance is higher than the expected load effect and 

this discharge between thesetwo vertical lines is some measure of safety margin in the 

structures. mu S is mean of the load effect, mu R is a mean of resistance, p S of S is the 

probability density function of S, p R of r is the probability density function of 

resistance. mu S plus case into sigma s we call it as characteristic value it could be 1 

sigma or 2 sigma or some number. Then similarly, mu R minus k R into sigma R is 

called characteristic value of the resistance. T We will use these two notations for some 

discussions to follow. 
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Now, as per the given problem, r is modeled as a normal random variable with mean mu 

R and standard deviation sigma r. Similarly, s is modeled as a normal random variable 

with mu S as a mean sigma S as S standard deviation and R and S are independent. We 

introduce the notation coefficient of variation delta r and delta s which is the ratio of mu 

R by sigma R mu S by sigma S. 

Now Z, we define as R minus S. Z is a safety margin we can say. Z is a random variable. 

Since R and S are Gaussian random variables, Z is also a Gaussian and we can show that 

the mean of Z is mu R minus mu S and standard deviation is sigma R square plus sigma 

S square. So, from this the probability of failure can be evaluated as the event probability 

Z greater than Z less than 0 so that is safety margin is less than 0. So, the probability of 

failure can be evaluated and to be shown by given by this. 

Now, the question we are asking is,suppose P F is specified, the mean of R in mean of S 

are buried, the question we are asking is how much we should over estimate the loads 

and how much we should under estimate the resistance so that this target probability of 

failure is realized. We rearrange these terms and X plus mu R and mu S plus sigma R 

square plus sigma X square square root phi inverse this. That means, mu R should be 

greater than or equal to mu s by this factor if beta is large, the risk is small. That means 

the risk is loads exceeding the structural capacity. 
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 To bring it to the form of the factors that we are looking for, we introduce the variable 

epsilon which is square root of sigma R square plus sigma s square divided by sigma R 

sigma S. Typically this number is about point 7 5. It is non-dimensional. So, we write for 

beta which is mu R minus mu S by square root of sigma R square plus sigma S square in 

terms for this square root sigma R square plus sigma S square, I write epsilon into sigma 

r plus sigma S and if I rearrange the terms, I get this particular format where the 

structural resistance is under estimated by this factor and load is over estimated by this 

factor and these factors are explicitly related to the target probability of failure and 

parameters epsilon and delta are related to the uncertainty in variable R and S. 

 We can define for example, the ratio of mu R to mu S and this we can call it as central 

safety factor. So, through this analysis we are able to relate factor of safety explicitly to 

the target failure probability and uncertainties in the loads and structural capacities. 
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That would mean the format that we have got is in the form phi bar in to mu R must be 

equal to gamma bar in to mu S. This is the design equation where phi bar is called a 

capacity reduction factor and gamma bar is called a load factor. The design format that 

we have to follow is given by this. That means, this reduction factor here in to mu R 

must be equal to this over estimation factor in to the load. 
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Now, we have defined factor of safety with respect to mean values. We can also define 

with respect to the characteristics value. The characteristics values are typically used in 



 

specifying strength such as for example, concrete and things like that, we use 

characteristics values so the factor of safety can also be expressed in terms of 

characteristic value. Now, if we do that, a characteristic value of R is related to expected 

value of R and standard deviation through this relation and similarly another relation for 

characteristics value of S and if we rearrange these terms, I get the design format in 

terms of characteristic equations characteristic values of R and s and here the factors are 

different from what were applied on the mean and mean values. 

So both the formulae, if you use this or the other one with respect to the mean would 

ensure the same level of probability of failure but they are expressed in terms of different 

typical values for R and S. In one case it was mean, here it is in terms of characteristic 

values. 
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 What happens if the structure is now subjected to more than one loads? For example, as 

structures need to be design for more than one loads, it is unlikely that all the loads 

would act simultaneously. we may need to consider load combinations like dead load 

plus live load, dead load plus live load plus wind, dead load plus live load plus 

earthquake and so on so forth. So, in that situation, how do I over estimate the load 

effects and under estimate the structural resistance? 
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 We again consider linear models. We assume that the load combination is linear. So, I 

can define s as summation i equal to 1 S i where S i let us assume they are all normal 

distributor independent and S thus becomes a normal random variable. This is the 

combined effect of all the loads. So, we can directly characterize we can go back to the 

first formula where the combined effect of all the loads is characterized in terms of single 

random variable. But this approach is unlikely to be useful because the uncertainty is 

associated with say different load sources or characteristically different. For example, the 

uncertainty in dead load and uncertainty in wind or earthquake or traffic on a bridges 

etc., are quite different. We need to assign the factors individually to each of these load 

sources. So, how do we proceed? 
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 We again begin by the formulation mu R is mu S plus beta sigma square root sigma R 

square plus sigma S square and we defined this epsilon we retain that. But now, sigma s 

the standard deviation S now I express in terms of the different sources of loads as 

shown here. 
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 I introduce another quantity epsilon n n as the ratio of square root of the sigma S 1 

square sigma S 2 square etc., divided by sum of all these standard deviations and based 

on that i can write the expression for mu R and mu S through this and if we now 



 

rearrange these terms in systematic manner, we get the design equation as shown here. 

This is the reduction factor on R and this is the over estimation factor on S 1 over 

estimation factor on S 2 and so on so forth. 

So, each of these factors which multiply the mean values of resistance and loads depend 

upon the target reliability that we are looking for or the target probability of failure that 

is specified and the uncertainty characteristics of various load sources and structural 

properties. Now, this is the advantage of using a systematic frame work to characterize 

uncertainties. 
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Here, we are able to decide if we need to estimate the factor by which says the load 

source S 2 has to be over estimated. This formulation clearly tells us what data should be 

gathering and how to interpret that. Now, the discussion here is for highly idealized 

situation of linear problems but in reality structural behavior and uncertainties etc., are 

more complicated. Typically, we get non-linear and non-Gaussian non-linear 

performance functions and non-Gaussian random variables. So, the theory of structural 

reliability helps us to tackle those problems. So, generalization to these discussions, if 

you are interested, you should look into methods of structural reliability analysis. 
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Now ,we return to some problems in theory of random processes. The problem that I am 

considering here is: we consider the pseudo acceleration response spectra given in the IS 

code 1893 for a certain value of p ground acceleration and that is given here. The 

question that we are asking is, how do we simulate, how do we obtain a power spectral 

density function which is compatible with this pseudo acceleration response spectrum? 

So, that is the problem. The problem is to determine power spectral density function 

which is compatible with given response spectrum. 
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So, underlying this assumption is the logic that the ground acceleration is a Gaussian 

random process is 0 mean. So, I can read through this. The figure shows the pseudo 

acceleration spectra for a rocky site according to i s 1893. The p ground acceleration is 

taken to be point 2 4 g. It is of interest to develop a random process model for the ground 

acceleration that is compatible with this response spectrum. It may be assumed that the 

ground acceleration can be modeled as a 0 mean stationary Gaussian random process. 

The duration of the acceleration can be taken to be 30 seconds and a given response 

spectra may be interpreted as locus of 84 percentile point and damping may be taken to 

be 5 percentage. 
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Now, with this data, how do we proceed? So, this we have discussed. We have discussed 

the problems on how to generate a response spectrum compatible with a given power 

spectral density function and also we have discussed how to generate a power spectral 

density function compatible with the a given response spectrum. These two problems we 

have discussed. This involves the extreme value theory of stationary Gaussian random 

processes and propagation of uncertainties in single degree of freedom linear system. 
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 I will not repeat this theoretical formulations but we can quickly recall the steps again I 

had discussed this in one of this earlier lectures. To solve the given problem, you need to 

develop a computer program is not something that you can do on pen and paper. There 

are iterations involved etc., but this is a problem that is worth doing. You will learn 

several things about extreme values of random processes and definition of power spectral 

density function. 
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 I will show some of the results that has been obtained through on such software that we 

have developed. This is the target power spectral density function. What we did is the 

blue line is the target power spectral density function, the compatible power spectral 

density function obtain from the given response spectrum. To check whether the 

formulation is right using this power spectral density function, we rework the response 

spectrum and check that it is showing the same answer. 
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 Here the that result of that exercise is shown. This is the red and blue are sitting on each 

other. So, it is satisfactory. Once the power spectral density function is determined 

assuming that the random process is mean square periodic and using theory of fourier 

series representation of time histories of such samples of such random process, we can 

simulate samples. Some of these samples are shown here for sake of illustration and from 

this samples, you can use methods of statistical estimation theory and estimate the power 

spectral density function. That also is shown here. From these 100 samples, we have 

estimated the power spectral density function and that is comparing the blue line is 

buried inside this waving z line. This is due to sampling fluctuations as sample size 

increases this will become a smooth curve. 
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So, from the simulated sample estimated power spectral density function, again we have 

estimated the flow response spectra, just to make sure the things are all right in 

estimating the power spectral density. So, this also shows reasonable match. 
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Now, in this example that we concluded discussing just now, we started with a well-

known pseudo acceleration response spectrum and derived a compatible power spectral 

density function. Now, we can do the other exercise. We can start with a well-known 

power spectral density function model and try to derive the compatible response 

spectrum. So, this is the exercise that we do here. This figure, we consider a Kanai 

Tajimi power spectral density function. The problem on hand is, the figure shows the 

power spectral density function of a ground acceleration which is modeled using Kanai 

Tajimi’s approach with omega g as 15 radian per seconds and etcetera g is point 6. 



 

Determine the pseudo acceleration spectra compatible with this psd function spectral 

density function. It may be assumed that the ground acceleration is a 0 mean stationary 

Gaussian random process. 
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The duration of the acceleration can be taken to be 30 seconds and the target response 

spectra may be interpreted as a locus of the 84 percentile point and damping may be 

taken to be 5 percent as in the previous example. Here again, you want to do this, you 

have to write a program and that procedure is already described in one of the earlier 

lectures. 
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So, compatible with this power spectral density function we obtain this response 

spectrum. This is the pseudo acceleration response spectrum which is compatible with 

the given Kanai Tajimi power spectral density function. Here again, after getting this 

response spectrum, starting with this as the response spectrum, we converted this to the 

equivalent power spectral density and recovered the target power spectral density 

function. Here, the two power spectral density functions, one which is the target that is 

this given Kanai Tajimi power spectral density function and the other one which is 



 

derived from the compatible flow response spectrum are superpose and the mutual 

agreement that we see point towards correctness of the development of the code. 
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I nowconsider  another class of problem. This is discussion on out crossing theory of 

random processes and application to problems of load combination. We will see what 

this means. The problem statement is as follows. There is some back ground and then 

there is a question. Let Q of t be a quasi-static load on a structure, for example sustained 

live load. If we are interested in designing the structure for this load, we can estimate the 



 

maximum value of the live load. For example, Q m is maximum over t Q of t and use 

that in the design but often this practical situation is more complicated. 

 We can ask the question: what happens if more than one loads acts simultaneously? For 

example, Q of t is q 1 of t plus Q 2 of t. Now, the difficulty here is the maximum of Q of 

t which is maximum of some of Q 1 plus Q 2 is not actually equal to some of maximum 

values of Q 1 and Q 2 simply because the maxima reset different times. 

 Now, if we consider the failure event of Q of t crossing a critical barrier psi of t, Q of t 

can be interpreted as a low defects. It need not to be the load it say we can think them as 

response due to dead load response due to live load so on and so forth. Therefore, we can 

talk about a critical barrier and we are considering now the failure event of Q of t 

crossing a critical barrier psi of t xi of t. Now, notice in earlier formulation when we 

discussed level crossing problems, this barrier was a constant. It is not time varying. 

Now, for sake of generality, we are taking this barrier also as a function of time. Now, 

we define N xi of T as number of times the level xi of Ts is crossed in the interval 0 to T. 

Now, the problem on hand is: we have to show that, if Q 1 and Q 2 are independent, the 

probability are failure we can get a bound which is P naught plus expected value of N psi 

of t where P naught is failure of the structure at T equal to 0 and also we are asked to 

obtain the expression for expected value of N psi of T. 
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So, how do you proceed? Probability of failure is failure at T equal to 0 union the 

number of crossing between 0 to T is greater than or equal to one. Now, these two are 

not mutually exclusive. Therefore, if you use for the axiom, you will get probability of 

failure at t equal to 0 plus probability that N psi of t is greater than or equal to 1 minus 

the probability that failure at t equal to 0 intersection N psi of t greater than or equal to 1. 

Now, we can place a bound by ignoring the third term. First two terms will be greater 

than P F will be less than or equal to this. Probability of N psi of T greater than or equal 

to one given that N xi is a Poisson random process is a counting process we can write in 

this form. 

 This itself is less than or equal to here I this is actually summation of probabilities but 

now I am introducing n here. So, this number will be less than or equal to this. The 

second term here is nothing but expected value of N xi of T, variable to show that P F is 

less than or equal to p naught plus expected value of N psi of T. So, that is a first part of 

the problem. 
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Now, more difficult question is how do you evaluate this expected value? We can recall 

bit of what we did earlier in order to characterize the average rate of crossing of a critical 

barrier by a random process, we need the joint probability density function of the process 

and it is derivative at the same time instant. 



 

 Now, we are having the process Q of t. I need joint density of Q of t and Q dot of t at the 

same time and that involves four random variables Q 1, Q 2, Q 1 dot, Q 2 dot. I need to 

construct the joint density function of Q Q dot. So, what I do is, I introduce two dummy 

variables U and V. U is Q 2, V is Q 2 dot because this is two functions of four random 

variables. I have to make it as a problem in four functions of four random variables. I 

introduce this dummy variables and first step, I determine joint density of Q Q dot U V 

and I get this in terms of, you can express the inverse relation and I get this as the 

relation. 
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 Since Q 1 and Q 2 are independent, I can write in this form and following this, we want 

the marginal density of Q Q dot, we carry out integration with respect to U y. This is 

nothing but the convolution of joint density of Q 2 Q dot Q 2 dot with Q 1 Q 1 dot which 

is not surprising. Now, again we need to recall this is something that we have done for a 

stationary random process X of t, we have developed the algorithm for finding the 

number of times a level alpha is crossed and that we have shown to be we first 

introduced Y of t as the step function u of X of t minus alpha, the differentiation of that 

and the modulus of that and summing all this spikes, we get N of t as 0 to t mode X dot 

direct delta X of t minus alpha d t. 
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So, we need to exterd this logic for the given problem. N psi of t is number of times the 

level xi of t is crossed in 0 to capital T with positive slope. Now, I define Y of t is Q of t 

minus xi of t. This is now a function of time. Earlier, we are taken into the alpha. Now, 

we have taking into the function of time so that we need to carry forward. Y dot of t is 

derivative of this which is Q dot minus xi dot direct delta of Q minus xi. Now, I define I 

want positives crossings. Therefore, i multiply this by the relative gradient to be positive. 

That is step function of Q dot minus xi of t. Therefore, the required number of evens that 

we are looking for is, integral of this counter 0 to t Q dot minus xi dot direct delta Q 

minus xi step function Q dot minus xi dot. 



 

(Refer Slide Time: 38:15) 

 

 We are interested in the expected value of this integrant that provides the rate at which 

these events are occurring. The average rate of occurrence of these events. This has the 

random variables Q and Q dot. This expectation can be written in terms of the joint 

density of q and q dot and since there is the direct delta function and step function certain 

simplifications are possible, the direct delta function means integration with respect to q 

can be performed wherever there is a q replace by xi of t. This step function means the 

limit from minus infinity to plus infinity will now become limit from xi of t to infinity. 

 With that in place, I get this expression which is the average rate at with the events are 

occurring now has the joint density of Q Q dot which we have obtained in terms of 

convolution of the twosecond order density of Q 1 and Q 2. So, the required expected 

value is given by this. 
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So, the moment we have the characterization of Q 1 and Q 2, we can evaluate this 

expectation and hence we get a bound on the probability of failure. The actual evaluation 

of this integral has been reported a literature for certain simple cases. For instance, for 

Gaussian it is straight forward and for certain other combinations, solutions are available 

but a general solution is difficult to obtain and certain alternative need to be developed. 

Now, the idea of discussing this in the present context is the level crossing theory that we 

have learnt can be used for situations where there is no dynamics in the sense of inertial 

effects in structural behavior but still there is a time variation in the loads which cause 

call for adopting stochastic process models and consequently the questions that result on 

safety of the system are again related to concepts of level crossing first passes time etc., 

So, that was a message that I was intended to be convert through this example. 



 

(Refer Slide Time: 40:23) 

 

(Refer Slide Time: 40:56) 

 

The next example is consider some discussion fatigue crack growth modeling under 

random loads using fracture mechanics concepts. We have developed the theory for 

accumulation of damaged under random vibration and we basically adopted formed a 

minor hypotheses but here we are get trying to look at the problem in a slightly a 

different way. 

Now, the fracture mechanics based approaches the basic assumption is that there exists a 

crack in the structural component. The question is: given the geometry of the crack, the 



 

loads, the boundary conditions, can we say if the crack is likely to grow? This is the 

basic question that is answered in fracture mechanics. H  

What are the parameters that measure the potential of the crack. Several things like stress 

intensity factor, energy release, j integral, crack tip opening displacement and so on and 

so forth. We will focus our attention on stress intensity factor. 
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 There are 3 different modes of cracking. This is the mode one failure where the 

specimen is loaded as shown here and this is the crack and we adopt a coordinate system 

origin at the crack tip. So, this red line is nothing but the crack that we are seeing here 

and this x 1 x 2 is the courtesan coordinate r theta is the polar coordinate. We can use the 

theory of solid mechanics and obtain the stress fields assuming say plate strain model 

near the crack tip and we can show that they are given by the sigma 1 1 2 2 3 3 stress 

components and what you should noticed is all these three components can be expressed 

in the form K into square root 2 pi by r into some function of theta. 
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Similarly, displacement field also can be found out. u 1 is again we are having sigma into 

square root pi a and some function of r and some function of theta. Now, in the 

expression for stress and displacement component, the quantities sigma and square root 

of pi a are appearing together. The question is: can we give name for this? We have done 

this in the past in other branches of mechanics. For example, young’s modulus and area 

moment of inertia get multiplied in Euler Bernouli beam theory and EI we call it as 

flexural rigidity. 

Similarly, mass into velocity, we call as moment mass into velocity square as kinetic 

energy and so on and so forth. So, what we do is, we call this quantities sigma into 

square root of pi a as stress intensity factor. So, this is sigma into square root pi a. Now 

by definition, the crack propagates if K I is greater than a critical stress intensity factor 

which is the material property. Now, the analogy is like stress and yield stress and SIF 

and critical SIF. 
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So, if stress exists yield stress, the linear behavior seizes. Similarly, if SIF exceeds 

critical SIF, the cracks propagates. In terms of stress intensity factor, the stress fields and 

displacement fields in r theta coordinate can be summarized as shown here. 
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Now, experimentally, it is observed that the rate at which crack propagates, suppose a is 

a crack length and n is a number of cyclic cycles of loading, d a by d n if you plot as a 

function of log delta K, delta K is K is the stress intensity factor delta K is a increment. 



 

ICharacteristically three regions are observed. The first region is crack initiation, second 

one is region of stable crack growth and third one is unstable crack growth. 
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 In the region of stable crack growth namely region 2 on a log log scale the relationship 

between d a by d n and delta K is linear and we postulate a model of the kind d a by d n 

is C into delta K to the power of n. This d a by d n typically is the function of delta K 

max K min delta K theoretical, that is this young’s modulus Poisson’s ratio yields stress 

ultimate stress strain and so on and so forth. So, this epsilon I are environmental 

variables like temperature humidity salinity etc., 
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 A kind of a dimensional analysis can be performed and the structure of this law can be 

identified in it is identified in this form a several non dimensional parameters here and 

one of the model that is popularly used is known as the Paris Erdogan model where we 

assume that the equation is d a by d N is C delta K to the power of m delta K greater than 

0 a of 0 is a naught that is a initial crack length. 

Now, as I said, on a log log scale, there is a straight line relationship between d a by d N 

and delta k. For example, for a particular steel, the parameters a when it is measured in 

meter delta k in mega pascals into square root m, the coefficients c and m are in this 

form. So, m is 3 point 0 and C is given in this form 6 point 8 10 to the power 12. So, 

similar characterization for other material is also available. 
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Now, the problem here is the phenomena of crack propagation is highly prone to effects 

of uncertainties. So, the uncertainties are associated with macro properties of specimens 

the geometry dimensions material properties they may vary from specimen to specimen. 

There will be problem with external loadings. There is inhomogeneous micro structure 

with in a specimen and we test on identical specimens behavior of crack length of 

identical specimen is random. The crack length behavior is non-linear in time. The 

curves are different specimens intermingle. 
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 Consequently, we need to use theory of probability and random processes to deal with 

this situation. There are basically two approaches. In the first approach, we treat constant 

appearing the differential equation for evaluation of a as a function of N as random 

variables. So, C and m can be viewed as random variables.  

In the other approach, we introduce a random process X of t as d a by d N is c into delta 

k to the power of m where this n and t are related n is lambda t by 2 pi. So, it is a 

basically a time evaluation equation but we count time in number of cycles. That is why 

this n is retained. 
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Now, what I would like to discuss is a phenomenon logical model called cumulative 

jump models that is based on theory of random processes and that I will discuss first and 

then explain how this can be the model parameters. From this, how they can be related to 

say the information contained in Paris law and so on and so forth. So, we define A of t 

comma gamma is a random process which is length of the dominant crack at time t. 

Now, this gamma is point is sample point so that will be suppressing in future 

description. So, A of t, I write as A naught which is a initial crack length plus i equal to 

one to n of t Y i where Y i is delta a i. So, n of t is a counting process. It is a 

homogeneous Poisson process that counts a number of crack increments. Every time, 

crack increments by delta a, the crack propagates and n of t is the Poisson process. 
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Now, we can characterize this random process with the basic understanding that we 

have. So, probability of N of t equal to K is e raise to minus lambda naught t lambda 

naught t to the power of K by k factorial K running from 0 one 2 etc., and we take Y i to 

be these Y I s which are the increments in crack lengths to be iid sequence of non-

negative random variables with a common probability density function Y p Y of Y. 
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We assume that N of t is independent of this Y I s and we are interested in finding 

probability of A of t less than or equal to A and associated density function. Now, we 



 

define A 1 of t as is summation I equal to one ton of t Y i and we consider the moment 

generating function which is expectation of minus S A 1 which is given by this here and 

we first find this expectation by conditioning on N of t the citric that we have been doing 

and based on that we get this as the characteristic function. 
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This is the moment generating function of A 1 in terms of the G of s which is the 

moment generating function of Y i which is identical independent iid sequence with a 

common G of s which is e raise to minus s Y expected value of e raise to minus s Y. 
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Now, let us assume for the sake of discussion that Y is exponentially distributed. So, the 

characteristic function here is alpha by alpha plus s and therefore I have now if I do the 

fourier transform of this, I can get the probability density function of A of t. So, this is 

which are after some simplification this infinite summation can be shown to be related to 

the Bessel’s function of the first time and therefore p of a 1 is obtained and consequently 

A of t is which a not plus A one of t can be obtained as shown here. 
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Now, how do it can make the model for the life time. Let xi be the critical crack length 

estimated from the knowledge of K I C. Now, T be the time period for A of t to reach the 

critical length xi. So, the first persist time probability T greater than t is same as 

probability of a of t is less than or equal to psi. So, P T of t therefore can be obtained 

from the knowledge of probability density function or distribution function of A of t. So, 

by differentiating this, we can show that or carrying out this integration, we can show 

that the first persist the time required for A of 2 to reach the critical length is density 

function is given by this. 
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This is fine, but it has several model parameters. How do we relate it to the actual 

behavior of these specimens. Model parameters are lambda not associated with the 

process N of t, alpha associated with p Y of y. The basic idea is, we derive these model 

parameters from laws such as Paris law. An approximate method to achieve this would 

be to modify the Paris law to allow for randomness in applied stress and system 

parameters. So, again start d a p by d N is C delta K to the power of m with a p of 0 as a 

naught. 
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Now, let S of t be the stress field that is modeled as a Gaussian stationary random 

process and what is meant by cycle N is omega S into t. So, d by d N becomes one by 

omega s d by d t. This delta K, we replaced by S max minus S min and we get this 

expression. We interpret omega s which is not known as the average rate of peaks in S of 

t. So, if S of t as a random process is known, I can find out omega s which is given in 

terms of the spectral moments for then the second spectral moments. 
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How do we interpret delta K? delta K is delta sigma square root pi a. So, interpret delta 

sigma as expected value of S max minus S min which is a mean range. So, the mean 

range, we have now in terms of the peak factors, we can derive that we have derive 

maximum and minimum. We can also derive the expression for the range which are not 

been done but you can do it in terms of spectral moments we can obtain that. 

 Consequently, i have now the law d a p by d t is omega s, C into square root pi to the 

power of m, a p to the power of m by 2 expected value of S max minus S min to the 

power of m equal to this. 

 How do we interpret lambda naught? If we take N of t to a number of peaks above a 

level s naught, then lambda naught becomes the average rate of peaks in s of t above 

level S naught. Now, s naught can be taken as fatigue limit of material, that is the 

endurance limit below which the fatigue damage would not accumulate. So, that lambda 

can be again evaluated using the theory of stochastic processes and spectral moments and 

we have this expression. 
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How to select alpha? alpha can be selected by minimizing a F of alpha is a major of 

mean square error 0 to t star A p minus A whole square d t is minimized. t star is time 

required by A p of t to reach xi. The point that is made through this example is that by 

combining theory of random processes and certain empirical laws and concepts of action 



 

mechanics, we can get a refine theory for stochastic characterization of accumulated 

fatigue damage. 

 We will conclude this lecture at this point. In the next lecture, will continue some more 

discussions of specific problems of dynamical systems under random excitation. This 

lecture is concluded at this stage. 


