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So, in the previous lecture, we solved some problems covering topics in theory of 

probability; we will continue with that; we will discuss some problems related to theory 

of random processes. So, again there are set of problems, that I will be discussing in this 

lecture, they are not particularly ordered in any sequence of increasing complexity or any 

such scheme, they just go by topics. So, we will now start with the first problem, the 

problem is as follows.  

Consider the vector random variable, Y given by Y 1, Y 2, Y 3; it is 3 cross 1 random 

vector; it is given that Y is normal with mean vector mu and correlation matrix r given as 

shown here; mean is 1 2 3 and correlation is matrix is this; we now found the random 

process X of t is Y 1 plus Y 2 t plus Y 3 t square. 



So, the problem is to find the mean autocorrelations and cross correlations of X of t and 

X dot of t. Y is a 3 cross 1 vector; so mean is 3 cross 1 and correlation matrix is 3 by 3; it 

is symmetric. 
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Now, we define a vector N of t as 1 t t square, so that X of t can be return as n transpose 

Y. Thus, now expected value of X of t will be n transpose into expected value of Y, 

which is 1 t t square and this is 1 2 3; this will be 1 2 t 3 t square. Now, we can 

differentiate the mean and get the mean of the derivative; in this particular case, it will be 

B plus 2 C t, expected value of B plus 2 C t, which is 2 plus 6 t. 

Now, this matches with the derivative here, 2 plus 6 t so that is find as we expect. Now, 

the expected value of X of t 1 into X transpose t 2 will be N transpose t 1 Y Y transpose 

N transpose t 2. So, with that, if we write now N transpose, this is 1 t 1 t 1 square 

transpose and this matrix Y Y transpose and N t 2 is 1 t 2 t 2 square. So, if we carry out 

this multiplication, we get this expression for R X X of (t 1, t 2) and for t 1 equal to t 2 

equal to t, we get 4 minus 2 t plus 21 t square plus 19 t 2 the power of 4. 
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So, now, we have expected value as given here, 1 plus 2 t plus 3 t square and correlation 

function autocorrelation function is as shown here and from that, I got the mean square 

value and I can now get the variance as mean square value minus square of the mean. If I 

do that, I get this expression and that I have shown here just to make sure that 

calculations are right one check is that, variance is positive and it is to that extend, the 

answers are reasonable. 
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Now, this is the autocorrelation function for X of t. Now, if we want now cross 

correlation between X of t 1 and X dot of t 2, we can begin by differentiating this 

autocorrelation function and we get this expression minus 1 plus 9 t 1 plus 12 t 2 plus 38 

t 1 square t 2. We could check this by directly evaluating expected value of X of t 1 into 

X dot of t 2; X of t 1 is Y 1 plus Y 2 t 1 plus Y 3 t 1 square; X dot of t 2 is Y 2 plus 2 Y 3 

t 2 and if we carry out this expectation operation, we get what we got earlier by 

differentiating the autocorrelation function of the parent process.  

Similarly, we can find out now the autocorrelation of the derivative process by 

differentiating the autocorrelation function of X of t with respect to t 1 and t 2 and we get 

this function. So, this completes the solution to the problem; this helps you to manipulate 

simple properties of a random processes first and second order properties. 
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In the next problem, we consider a random process X of t, which is a into exponential j 

omega t minus theta; a is a deterministic constant; j is square of root minus 1 complex 

number; capital omega is a random variable with probability density function p omega of 

omega and characteristic function phi omega of lambda; theta is a random variable that is 

independent of omega and distributed uniformly in minus pi to plus pi. So, we are asked 

to determine autocorrelation and power spectral density function of X of t and show that 

they have certain properties. 
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Now, X of t is a into exponential j omega t minus theta; therefore, expected value of this 

is a, is a constant. So, we get expected value of j omega t into expected value of minus j 

theta, because omega and theta are independent, I can multiply these expectations since 

theta is uniformly distributed between minus pi and or 0 to 2 pi, e raise to j minus theta is 

cos theta minus j sin theta and average over 0 to 2 pi that would be 0 therefore, the mean 

would be 0.  

Now, the expected values of X of t into X conjugate t minus lambda; X of t is a complex 

valued random process. So, when we find autocorrelation, we have to take the 

conjugation; if we do that, we get this to be a square into expected value of j omega 

lambda; this is nothing but if you look at the expectation here, it is nothing but the 

characteristic function of random variable capital omega. So, that would mean R x x of 

lambda is a square into characteristic function of lambda omega. 

Now, the Fourier transform of this if we take, that is S x omega will be the Fourier 

transform of this function since this is the characteristic function of or proportional to the 

characteristic function of capital omega the, Fourier transform of this will be the 

probability density function. 

So that is what we are asked to show that, autocorrelation function is proportional to the 

characteristic function of omega and power spectral density function is proportional to 



probability density function of omega. We will return to a similar problem slightly later 

and make some more observations on this solution. 
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Another exercise in manipulating simple random processes, we define a random process 

Y of t as X of t plus 2 X t minus tau plus X of t minus 2 tau, where X of t is a 0 mean 

stationary random process with power spectral density function; S x x omega is C 

divided by omega square plus lambda square alpha square. The problem on hand is to 

determine the power spectral density function of Y of t.  
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So, we need to evaluate the mean and auto covariance of Y of t and take the Fourier 

transform. We could do it in alternate way, but this is what we are trying to do now. So, 

if Y of t is X of t into 2 X t minus lambda plus X of t minus 2 lambda, the expected value 

of Y would be 0, because X of t has 0 mean. 

Now, I can write an expression for Y of t plus tau by replacing t by t plus tau and I get 

this expression. Now, if I multiply this with this and take an expectation, we can show 

that we will get somewhat long looking expression, which involves for instance, X of t 

into X of t plus tau is R x x of tau; X of t into 2 X of t into 2 X t minus lambda plus tau is 

this so on and so forth. So, we have to simply this, to get the required expression. 
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Now, we have now determined the auto correlation of Y of t, which is the auto 

covariance also since mean is 0. Now, we need to find the power spectral density 

function now, before we do that, we can quickly do a small calculation. If S of omega is 

the Fourier transform R of tau, if you now consider Fourier transform of R of tau plus a, 

it will be R of tau plus a exponential E raise to minus omega tau d tau. And if I now 

substitute tau plus a as u, I will get this expression from which it follows that the Fourier 

transform of R of tau plus a will be exponential i omega a into S u u of omega; S u u of 

omega is a Fourier transform of R of tau. 



(Refer Slide Time: 09:53) 

 

So, the time delay or a time shift in R of tau leads to a multiplier of the kind E raise to i 

omega a in the frequency domain. Now, using that, we can now write the expression for 

quantities like R x x of tau minus lambda, tau plus lambda, etcetera we can now take the 

Fourier transform and use the result that we just now obtained. We get the power spectral 

density function of Y in terms of power spectral density of X along with these exponents 

and if we rearrange that and use the definition of exponential function E raise to i theta is 

cos theta plus i sin theta, we can show that the power spectral density function is given 

by this expression. 
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A plot of this is shown here; the blue line is the power spectral density function of X of t 

and this red line is the power spectral density of Y of t. A similar exercise, here we 

considered two independent random processes X of t and Y of t which have 0 mean and 

are jointly stationary; they are independent therefore, individually individual stationarity 

implies joint stationary. Define a new process Z of t which is X of t into Y of t minus 

lambda, where lambda is the deterministic constant. 

So, the problem is to find out the power spectral density function of Z of t. Now, Z of t is 

X of t into Y of t minus lambda; so expected value of Z of t is expected value of this 

product, but since X of t and Y of t are independent, I can multiply the expectations and 

since X and Y have 0 mean, the mean of Z of t becomes 0.  

Now, we will construct the product Z of t into Z of t plus tau so that will be X of t into Y 

of t minus lambda X of t plus tau Y of t minus lambda plus tau. So, if we complete this 

calculation, we can show that the auto covariance of Z of t is obtained as product of auto 

covariance of X of t and Y of t.  

Now, we are asked to find the power spectral density function. So, multiplication in time 

domain is the convolution in frequency domain. So, to obtain the power spectral density 

of Z of t, we need to convolve the power spectrum power spectral density function X of t 

with power spectral density of Y of t. So, this is a required answer; a slightly different 

kind of problem. 
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In next couple of problem, we will consider statically loaded beam structures, where load 

is a random field evolving in space that is a kind of problem that we will be considering. 

So, to start with, we will consider a simply supported beam of span L, which carries a 

distributed load f of x. The load is modeled as a segment of a stationary random process 

as f of x is equal to F not into 1 plus epsilon xi of X such that this X i of X has 0 mean 

and it is a white noise with unit strength. 

So, we are asked to find the bending moment at the mid span and joint probability 

density function of reactions at the two supports; this is the problem on hand. 
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So, we can begin by considering the reaction; this is the beam and this is the load; this is 

notionally shown f of x is given to be a white noise, so we cannot really the white noise 

is not physically realizable, but this is schematically shown here. So, we take moments of 

forces about point a, I get reaction B into L is f of x d x into x, that is the moment due 

to…  

So, we consider an elementary strip this and this load is f of x d x. So, this is the 

moment; from this, I get R B as 1 by L x into f not 1 plus epsilon psi of x d x or in a 

slightly simplified form we get this. Now, we take the expectation, first term is 

deterministic; it stays as it is; the next one is F not epsilon by L x into expected value of 

X i of X; X i of X is the 0 mean therefore, the mean of a reaction is F not L by 2. 
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Now, I will consider the variable F R B minus F not of L; this is another random 

variable, but now it will have 0 mean and it is given by F not epsilon divided by L into 0 

to L x psi of x d x, the mean of this is 0. Now, if you find the mean square value, we 

have to square this; so a single integral become double integral and if you take 

expectation, we have inside these integral expected value of X i of X 1 into X i of X 2, 

which is given to be white noise since psi of x is the white noise, this will be a direct 

delta function and one of the integration can be done easily and this is followed by the 

next integration, because this is the simple function, I get the variance as this. 
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So, what we have shown is reaction B is normally distributed with mean this and 

standard deviation this. Now, similarly, we can show the expression for reaction A; so 

here we take moment about B and the expression will be this and if you simplify and 

follow the steps that we are just now outlined for finding reaction B, we will find that 

mean of reaction A is again this number and standard division will be this. So, as you can 

expect, since structure is symmetric, loading is symmetric, the two reactions are 

identically distributed. 
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Now, how about the correlation covariance of reaction A and reaction B? If you do that 

exercise, to do that exercise, you have to take the expected value of R A minus mean of 

R A into R B into minus mean of R B. So, if you multiply this, each one is single 

integrals so the product will be the double integral and we get this and we can now carry 

out integration with respect to X 1 and X 2. We again note that, expected value of X i of 

X 1 into X i of X 2 is direct delta function. So, one integration can be done quickly; the 

other integration is also straight forward, we get this as the covariance.  

Since R A and R B are linear functions of X i of X, we are looking at quantities like 

integrals of Gaussian random processes. So, linear operation on Gaussian random 

processes preserve the Gaussian property therefore, R A and R B will be Gaussian and in 

fact, they are jointly Gaussian and this is the mean and this is the covariance function. 
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Now, similarly, we can find out the bending moment at the mid span that is one of the 

part of our question so that is given by this expression and we can manipulate this and I 

have not filled up these details; I will leave it as an exercise to complete the calculations. 

So, first you find the mean and then find the subtract the mean from M and find the 

expected value of this square of the difference, you get the variance and that is what you 

need to do by following the steps, which we have done for finding reactions at A and B.  
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Now, a similar problem, now we have a cantilever beam, it carries a randomly 

distributed load as shown here, q of x is the randomly distributed load; the load q of x is 

modeled as q of x into q not 1 plus epsilon f of x; f of x is the 0 mean that expected value 

of f of x 1 into f of x 2 is not a function of X 1 minus X 2, therefore, the process is not 

stationary; this random field is not stationary. The question that is being asked is 

determine the bending moment at a section x measured from the free end, that means, 

what is the bending moment at this section. 
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So, bending moment at that section can be easily found out. You find out the bending 

moment due to an incremental load q of psi into d psi, take moment about that section we 

get this and then, integrate from 0 to x. Now, you manipulate this expression; we get the 

bending expression for bending moment to be this. Now, mean of M of x is given by 

this; we have we have told that the expected value of F of psi is 0 therefore, the mean 

value will be q not x square by 2. 

Now, I will detect from M of x, q not X square by 2 as here and square it and take 

expected value, I get the variance of bending moment at x and that this is the expression 

that we have to deal with. Now, the auto covariance of F of psi is given to be of this 

form; now you can recognize that this is as the form of the Gaussian probability density 

function; so you can quickly see that we are writing expression for expected value of 

Gaussian quantities therefore, evaluation can follow simple rules. 
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So, following that, but limits are from 0 to X that has to be bound in mind. So, if we do 

this, there are various terms; we will get these four different terms; this is straight 

forward, you can check if these are right. 
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Then we get the expression, if you simplify, variance of bending moment is given 

through this expression, where this capital psi of x is the Gaussian integral, 1 by square 

root of 2 pi 0 to x e raise to minus x square by 2 d x. So, the applied load is a non-

stationary random process, we are able to get the variance of the bending moment at any 

point x.  
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So, the next problem is again on a cantilever beam. Here first go through the problem; a 

cantilever beam of span L carries a series of concentrated loads. The point of application 



of these loads is distributed as Poisson points on 0 to L. The magnitude of the loads is 

modeled as a sequence of ii-ds with a common Rayleigh distribution with parameter 

sigma. So, we are asked to determine the characteristic function of the reaction at the 

support. 
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So, what is happening is w 1, w 2, w 3, w n are Poisson points and reaction R and 

reaction M are to be determined. We are focusing on reaction R; reaction R is nothing 

but summation of N equal to 1 to N N of L w n; this N of L is a Poisson random variable 

and w n is a ii- d sequence of Rayleigh random variables.  

So, we are required to find the probability distribution of N. Now, what we are given is 

N of L is Poisson therefore, probability of N of L equal to n is E raise to minus a L a L to 

the power of n divided by N factorial and w that is w 1, w 2 3 w 2, w 3, etcetera form a 

ii- d sequence with a common density function p w of w and that is Rayleigh. We are 

asked to find characteristic function of R. 
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So, what is characteristic function of R? It is expected value of i omega R that is 

exponential of i omega N to 1 to capital N of L w i. So, what we do is, we condition on N 

of L, find a conditional expectation and then, take expectation of N of L with respect to 

distribution of N of L. So, we begin by considering the situation when there are no loads 

on the structure. So that is probability of N of L equal to 0 plus summation from k to 1 to 

infinity exponential i omega n to n from 1 to k w i condition on N of L equal to k and 

probability of N of L equal to k.  

So, probability of N of L equal to k is given by this E raise to minus a L a L to the power 

of k by k factorial and this is nothing but the characteristic function of the ii-d sequence 

w, we need to multiply them, because they are all independent; so this become phi w of i 

omega to the power of k.  

So, we can rearrange these terms; there is a L to the power of k here and phi w i omega 

to the power of k; if we arrange these terms together we can show that this characteristic 

function is nothing but exponential of a L phi w of i omega minus 1. This phi w of i 

omega is the characteristic function of Rayleigh random variable, that we can show I 

leave it as an exercise; it involves slightly tedious integration. You can show that this is 

given by the characteristic function of Rayleigh random variable phi is given by this; so 

you substitute that here and you got the solution to the problem that is post. 
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So, another simple example, the problem here is, we are given auto correlation function 

beta exponential minus alpha modulus t 2 minus t 1 sin gamma t 2 minus t 1. Question is, 

can this be a valid auto covariance function of a 0 mean random process. It is given that 

alpha, beta and gamma are positive. If you recall, the required characteristics of an auto 

covariance functions is should be symmetric. So, this function is symmetric, because if 

you exchange t 1 and t 2, the function remains unaltered therefore, function is symmetric 

so it passes this test. 
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Now, R of (t, t) should be greater than 0 so that if you see here, there will be a problem, 

because sin gamma of 0 is 0; so the variance becomes 0. So, since the function is not 

positive definite, we can we can answer to this question is, this cannot be an auto 

covariance function of a random process. Another example, where you need to 

manipulate a random process and its derivative; so consider X of t to be a stationary 

random process with 0 mean, we define Y of t as X of t plus a of t into X dot t minus 

lambda, where lambda and a of t are deterministic. Determine the auto covariance of Y 

of t. The auto covariance of X of t is given to be sigma square exponential minus alpha 

mod tau into 1 plus beta mod tau. 
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So, this a reasonably straight forward exercise, which we need to do carefully. So, Y of t 

is given as X of t plus a of t into X dot t minus lambda. The expected value of Y of t is 0, 

because X of t has 0 mean therefore, derivative process will also have 0 mean; so this is 

0. So, the auto covariance is given by expected value of Y of t into Y of t plus tau. So, 

you need to write expression for Y of t and for Y of t plus tau and multiply all those 

terms and if you carefully do that, the answer that we are looking for is R x x of tau plus 

a into t plus tau R x x dot tau minus lambda and so on and so forth. 
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So, here the question is, we need to evaluate R x x dot, R x dot X and R x dot X dot. We 

are given R x of tau so we need to use this formula to evaluate that. So, R x x of tau is 

sigma square exponential of this this into this multiplication factor; if you differentiate 

this, differential of modulus of tau leads to term called signum of tau, that needs to be 

handle and then, if you simplify, we will get this as a first derivative. 
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Now, this is nothing but R x x dot, we can get that quickly. Now, we can write signum of 

tau was u of tau minus u of minus tau and d u by d t of as direct delta function and thus 



get the higher derivatives also and go back and substitute into this expression, we will 

get the required auto covariance of Y of t.  

Now, you please notice that, R y y of (t, t) plus tau, Y of t is not stationary, because this 

R y y (t, t) plus tau is not a function of t alone, simply because there is a deterministic 

function a of t; because of that, this Y of t is non-stationary. But auto covariance is 

obtained as some kind of super position of R x x of tau, each one of is a function of tau 

only, because X of t is stationary. 
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Another simple problem, an undamped single degree of freedom system is set into free 

vibration by imparting random initial displacement and velocity. Characterize the system 

response. Determine the conditions under which the response can become stationary. So, 

these are reasonably simple exercise. So, the problem is x double dot plus omega square 

x is equal to 0; x of 0 is u; x dot of 0 is v, where u and v are random variables.  

So, x of t is a cos omega t plus B sin omega t. If you use the required initial specified 

initial conditions, I get x of t as u cos omega t plus v by omega sin omega t. Expected 

value of x of t is expected value of u into cos omega t plus expected value of v divided 

by omega into sin omega t. Since, we are not yet given the information on expected 

value of u and v, this is the answer at this stage. 
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Now, you find auto correlation; you have to multiply u cos omega t plus v by omega sin 

omega t with x of t plus tau and carry out the calculations and this is the answer that we 

get. But the question that we are asked is under what conditions on u and v, the process 

can become stationary? Now, if you simplify this expression, if we take if you look at 

auto correlation of x of t, this is the expression here and for x of t to be stationary, this R 

x x of (t, tau) should be function of tau alone.  

So, for that to happen, in this expression if expected value of u v is 0 and expected value 

of u square and v square by omega square are equal, we get auto correlation to be 

function of time difference alone, but mean is still a function of time. So, we need to 



make mean equal to 0; see mean is expected value of u into cos omega t plus this into sin 

omega t. So, this the way that this can become in time invariant is that, the expected 

value of u and the expected value of v should be equal to 0. So, under this condition, the 

process becomes wide sense stationary. 

(Refer Slide Time: 29:50) 

 

Here, we consider an input F of t which is 0 for t less than 0 and equal to e raise to minus 

2 t for t greater than or equal to 0 to a linear system, we observe this output. y of t is the 

output half e raise to minus 2 t minus e raise to minus 4 t, given this information. The 

system is now excited by a Gaussian white noise excitation with unit strength. Determine 

the power spectral density function of the steady state response. 
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So, notice that we are not given the governing differential equation here, but input output 

relation in time domain is given. Now, f of t is exponential minus 2 t U of t. So, the 

Fourier transform of this is, you can quickly verify, it is 1 one by 2 plus i omega. Y of t 

is given as half of E raise to minus 2 t minus E raise to 4 t into the step function. The 

Fourier transform Y of t can again be derived and that is shown here and based on this, 

we can determine the complex frequency response function, which is ratio of Y of omega 

to f of omega. 
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So, if we do that, I get the H of omega is 1 plus 4 1 by 4 plus i omega. Now, if the 

system is now driven by white noise, the output power spectral density function will be 

square of this transfer function into unit. So, the output power spectral density function is 

therefore, this. Now, you can to gain a bit of inside in to this, if you consider the 

dynamical system x dot plus beta x equal to E raise to minus alpha t, the starting from 

rest, we can see that the solution to this problem will be in this form and if we take now 

the 0 initial condition, we can get x of t is 1 minus 1 by beta minus alpha this that would 

mean that the given problem the underlined dynamical system is simply x dot plus beta x 

equal to some F of t.  

So, now, on this system, if you apply white noise, you can show that that you will get the 

same transfer function that you got for this system is 1 plus beta plus i omega and you 

can show that power spectral density function would be similar to what we got by using 

other argument.  
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In this example, we consider a non-Gaussian random process. So, here we are 

considering X of t to be F sin t plus phi plus Y of t; Y is P is deterministic; this is P, is 

deterministic, capital phi is a random variable distributed uniformly in 0 to 2 pi and Y of 

t is a 0 mean stationary Gaussian random process. You can also assume that Y of t and 

phi are independent. 
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Now, we are asked to determine the joint p d F of X of t and X dot of t. The question is 

are X of t and X dot of t uncorrelated or independent? So, X of t is F sin t plus phi plus Y 

of t. You take expected value phi is uniformly distributed between 0 to 2 pi; so expected 

value of this would be 0; the expected value of this also would be 0; therefore, expected 

value of X of t would be 0. Now, if you form the product X of t into X of t plus tau into 

expectation, we get this expression, where we use the fact that phi and Y are independent 

and if you simplify this, we get thus F square by 2 cos tau plus R y y of tau. 
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So, the process is the auto covariance function is the function of time difference; so we 

can conclude that X of t is wide sense stationary. Now, how about the joint probability 

density function? So, we consider X of t to be F sin t plus phi plus Y of t; X dot is F cos t 

plus phi plus Y dot of t. First what we will do is, we will find out the joint density 

function condition on phi. So, this will be P y y dot Y comma Y dot, where Y is X minus 

F sin t plus phi Y dot is X dot minus F cos t plus phi; we are finding conditional 

probability density function. 

Now, conditioned on phi, X of t is a Gaussian random process, because Y of t is 

Gaussian and it will have now the mean which is X minus F sin t plus phi; so if you 

mean will be sin t plus phi. So, if you write this Gaussian density function, this will be 

the conditional density function. Now, the unconditional density function, we have to do 

carry out integration with respect to the probability distribution of phi that is as shown 

here. 
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Now, if you make this substitutions, you can carry out this; we can show that P x of x 

dot, we can square this and take out terms, which are free from psi and look at the terms 

which contain only this sin sin cos psi; you can see that this integral is nothing but 

Bessel’s function i naught and this has this form, this is first term and this is second term. 

So, it is clear that x, x of t is a non-Gaussian random process and if you look at the 

marginal density again, the same logic can be used; probability density function of x 



condition on phi is this and P x of x is the unconditional density function will be will 

involve another quadrature with respect to phi and if you carry out this again, you will 

get answers in terms of Bessel’s function. If you multiply the marginal density, you can 

verify that you would not get the joint density function. 
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So, from this, what is the conclusion that we can draw? X of t and X dot of t are 

uncorrelated, because they are stationary random process processes and X of t and X dot 

of t are not independent. So, it is an example of non-Gaussian random processes, where 

process and it is derivative are uncorrelated, but they are not independent. 
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Now, while discussing random variable, we talked about what is known as Cheybychev 

inequality. Now, what happens to that inequality when we extend the logic to random 

processes? So, let X of t be a random process with mean mu X of t and variance sigma X 

square of t; now the inequality that we are asked to show is probability of modulus of X 

of t minus mu X greater than or equal to epsilon for some t in a to b is less than or equal 

to a quantity which involves the variance of X evaluated at a and b and an integral over a 

to b. 
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So, this is the generalization of cheybychev inequality and this can be proven. I have 

indicated the steps; I would not like to go through this; you can take a look reasonably 

straight forward. Now, let X of t be a stationary random process with 0 mean and auto 

covariance, which has the form of a Gaussian probability density function. The question 

is how many times can we differentiate this process? And we are asked to determine 

probability of X dot of t is less than or equal to 0.75, if it is given that the process is 

Gaussian and sigma is 1. 
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Now, R x x of tau is given to be this; from this, if I take the Fourier transform, I get the 

power spectral density function to be this. Now, if you consider the spectral moments, 

we can show that the since this exponent is decaying as minus omega square, all these 

integrals will exist for n equal to 1, 2, n, etcetera. In spectral moments, that 0 to 4, 6, 

etcetera are nothing but auto covariance of the parent process and there derivatives 

evaluated at tau equal to 0 and since all these are finite, it follows that X of t is 

differentiable in the mean square sense to any order n; so it is a fairly smooth process.  
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Now, we can differentiate the auto covariance function and we can evaluate the various 

quantities at X equal to 0. So, R x x of 0 is 1; from this, it follows. So, if you differentiate 

these twice, you get R x x dot and if you put tau equal to 0, we get 1 by square root of 2 

pi. And we can now write therefore, p X dot of X dot is given by this and from this, we 

are asked to find out probability density probability of X dot of t is less than or equal to 

0.75, which is an integral minus infinity to 0.75, this quantity this is given; so the answer 

that we are looking for is this number 0.97. 
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This is an interesting problem; here, we consider a random process N of t to be a Poisson 

random process with arrival rate lambda. Now, I define a new random process X of t 

which is minus 1 to the power of N of t. Now, we are asked to find a mean and 

covariance of X of t; X of t in the literature is known as semi random telegraph signal. 

So, X of t obviously, N of t is an integer value random process. So, whenever N of t is 

even, X of t will be 1 and N of t is odd, X of t will be minus 1. So, sample will look like 

this, depending on even odd combinations of n of t. 
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So, X of t is minus 1 to the power of N of t. So, X of t is 1, if N of t equal to 0 or N of t is 

even; it is minus 1, if N of t is odd. So, what is probability that X of t equal to 1? It is 

nothing but probability of N of t is 0 or N of t is even and that probability since it is 

Poisson distributed, I can evaluate and this I get to be that expression and if you carefully 

look at this series inside the bracket, we recognize that this is cosine hyperbolic term.  

Now, how about the case, where X of t is minus 1? We have to sum over all integers- 

odd values of n- and if you do that, I get E raise to minus lambda t sin h lambda t. 

Therefore, the expected value of X of t would be X of t takes only two values, with one 

probability is this; other probability is this. So, probability of X of t equal to 1 into 1 plus 

probability of X of t equal to minus 1 into minus 1. So, if you do that, we get the answer 

as 2 into E raise to minus 2 lambda t; so this is the expected value of X of t. 
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Now, what is correlation function auto correlation? Again X of t takes two values- plus 

1, minus 1; therefore, the product X of t into X of t plus tau is 1, if there are even no of 

occurrences in t to t plus tau; otherwise, it is minus 1. So, based on this argument, we can 

write the expectation of X of t into X of t plus tau and we can show that the auto 

correlation function is the function of modulus of tau.  

So, this process is wide sense stationary, that is, if I remove the mean, that is, if I define 

another process, where X of t minus 2 E raise to minus lambda t, if I consider that 



process, that will have 0 mean and it is wide sense stationary. I will return to some 

comments on this example shortly. 
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We will consider another problem; here, we consider a random walk that is performed on 

a two-dimensional plane with a uniform step size of delta. At every step, the direction 

alpha i is a random variable and alpha i alpha i’s taken to be iid sequence with a common 

p d F that is uniformly distributed in 0 to 2 pi. Find the distribution of the x- coordinate 

after n steps. That means, we start here, we draw a random variable to be distributed 

uniformly between 0 to 2 pi and this is our realization. So, we take one step, then next, 

this step, this step, etcetera so after n steps, I am here and I am asking what is this X? 
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So, X is nothing but i equal to 1 to n delta cos alpha i, where alpha i are the sequence of 

random variable that we have generated. So, what is the characteristic function of this? It 

is exponential expected value of exponential i omega X and it is this and since alpha i’s 

are all independent, I can get this. And we can evaluate this expected value of i omega 

delta cos alpha i and given that alpha i alpha i is uniformly distributed between 0 to 2 pi, 

I get this and this integral is nothing but Bessel’s function j naught. 
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So, phi X of omega which is a characteristic function of this random variable X is 

actually the j naught of omega delta to the power of n. Now, we have to invert it to get 

the probability density function and if you do this, we get this integral; this is the 

integral. And now if you do a series expansion for j naught to the power of n and 

consider the limit of n tend into infinity, number of steps going to infinity such that delta 

of square root of n goes to C that is a kind of limit that we used for taking a one-

dimensional random walk to a Brownian motion process in the same sense, this is done; 

if you do that, we can show that this process is this resulting random variable is 

Gaussian. 

(Refer Slide Time: 44:43) 

 

So, this is an illustration of application of central limit theorem. So, you get the limiting 

density function to be Gaussian. If that n tend to infinity is not reached, the answer that 

we are looking for is given by this integral.  

So, another example which will help you to manipulate simple random processes.; let the 

time interval 0 to t be divided into a sequence of equal intervals of length T, that means, I 

am considering some n T. Consider a sequence of n Bernoulli trails, that means, at every 

step probability of success is half. Now, I define X of t equal to 1, if success if we 

observe success on nth trails; if it is minus 1 it is minus 1, if we observe a failure so, 

where t is between n minus 1 capital T into N t. 



So, the problem is find mean and auto correlation of X of t. This is the second bit to this 

problem, where we define another random variable e, which is distributed uniformly in 0 

to capital T and independent of X of t. We define Y of t as X of t minus e. So, the 

problem is again determine the mean and auto correlation of Y of t. 
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This is the parallely simple exercise that needs to be carefully done. So, X of t is 1 if 

success on n th; trail X of t is minus 1 if failure on n th trail. So, X of expected value of 

X of t is therefore, 1 into half minus 1 into half which is 0; the mean square value is 

again we can easily find out, it is this. 
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Now, the product X of t 1 into X of t 2 is 1, if both t 1 and t 2 are contained in this 

interval n minus 1 capital T into 2 n t otherwise, it is 0. So, that completes the solution to 

this problem. Now, we introduce the this epsilon that is the random variable epsilon; now 

again we can find expected value on auto correlation of Y of t. We can first find the 

expected value condition on epsilon and then, integrate with respect to distribution of 

epsilon. If we do that, we can show I will leave this as an exercise that the auto 

covariance of correlation of X of t in this case that is Y of t in this case will be given by 

this function. 

(Refer Slide Time: 47:00) 

 



(Refer Slide Time: 47:14) 

 

So that is how it looks like here; it is a triangle over the step minus t 2 two steps minus t 

0 to t and it is 0 elsewhere. Now, this is a slightly question related to existence of random 

processes. So, we are given a positive function S of omega and we are asked to find a 

stochastic process whose power spectral density S of omega. 
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Now, there are two solutions; I will start with the second solution what I will do is I will 

determine a square, which is area under S of omega and define a function F of omega, 

which is S of omega by a square. So, clearly area under F of omega is 1 and it is positive. 



We assume that S of omega is equal to S of minus omega; so consequently what happen 

F of omega is F of minus omega. So that would mean based on these two properties, we 

can conclude that F of omega has the properties of a probability density function of a 

random variable.  

Now, I define a random process X of t as a cos omega t plus 5, where omega and phi are 

random variables with omega having probability density function F of omega and phi is 

uniformly distributed between 0 to 2 pi and omega is independent of phi. So, you 

consider now expected value of X of t, we can show that it is 0 you can start by you can 

find the mean condition on omega and then, integrate with respect to omega condition on 

omega this mean is 0 therefore the answer is 0.  

The auto correlation function can be evaluated; this is reasonably straight forward and 

you can show that the auto correlation function is a square into F of omega, which is 

what we are expecting. that is Auto correlation is this the power spectral density function 

is this which is what we are expecting. 

(Refer Slide Time: 49:12) 

 

Now, interestingly how does a sample of this function look like? They are If we assume 

say this as 1 they all are harmonics, where frequency and phase are randomly distributed, 

but the power spectral density function can be specified by the is a part of the 

specification of the problem. 
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By that what I mean is if power spectral density function is of the form say alpha square 

plus omega square. If i now assume that this is the output of alpha X equal to psi of t, the 

power spectral density can be shown to be similar to this and samples of this will look 

like this. But following the logic that we outlined here, X of t is a cos omega t plus phi, 

this also has the same power spectral density. So, these two samples come from two 

different random processes, whose power spectral density functions are the same. 

So, this would be question us to the fact that power spectral density function is an 

ensemble property. The two time histories that we see here represent samples from two 

different processes having the same mean and power spectral density function. 
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Just to summarize, we saw that one example earlier X of t is minus 1 to the power of N 

of t, where samples were like square waves. So, in this if we detect that mean, this 

quantity had power spectral density function or auto covariance function, which is same 

as the power spectral density of this; the power spectral density of response of this 

system. But in this case, the sample looks something like this; in the first case, it is a 

square wave pulse; in this case, it is harmonic. 
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So, while interpreting power spectral density function in modeling, you have to take 

cognisense of this fact. At the end of the day, it is a not a sample property; it is an 

ensemble property. So, this is what I am showing here; this is harmonic function; this is 

an erratic function and this is a square wave function. It is intuitively not clear; if i say 

that these three samples come from three different processes having the same power 

spectral density function.  
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Now, there are few properties of random processes with independent increments, that I 

will take up in the following lecture and that discussion will be followed by some which 

problems on first persist time and extreme value distribution and so on and so forth and 

then, we will consider some discussions on the notion of say factor of safety and 

probability of failure.  

The notion of factor of safety essentially originates from deterministic outlook, whereas 

probability of failure when we talk about how we are modeling uncertainty using theory 

of probability random variables and random processes so how they are related. So that is 

one of the questions, will briefly consider the philosophical issue there and then, we will 

consider some more problems in response of dynamical systems to random excitations; 

specifically, we will consider excitations which are non-Gaussian in nature and systems 

which are non-linear and we will apply in some problems the theory of Markova 



processes and derive the response moments and all these will consider in the following 

lecture. 

So, we will close the present lecture at this junction. 


