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We have been discussing an application of principles of random vibration to problems in 

earth quake engineering. We will continue with discussion on applications. So, in this 

lecture, I will consider two more applications - one is in the area of models for 

accumulated fatigue damage in randomly vibrating structures, and the second one is the 

area of vibration energy flow that is important in the area of high frequency vibrations of 

engineering structures. 

So, what I intend to do is to be favor of these two applications areas and illustrate how 

principles of random vibration analysis are employed here. The objective is not to 

describe the problems of fatigue damage nor the problems of energy flow, but to simply 

state the basic problem and illustrate how random vibration principles could be used. 
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So, we will start with problem of fatigue damage accumulation. So, some, we start with 

some empirical background. What is fatigue? So, we can say the fatigue is loss of 

mechanical integrity of the structure due to reversal of stresses. So, any structural 

material on some scale, on any scale, on, even on very fine scales will have some 

imperfections defects. Consequently, the strength of the structural material in a given 

volume depends on amount of defect that are present. 

Now, when the material is subjected to vibratory loads, there will be reversal of stresses, 

and as a consequence of this, the defects and imperfections grow within a given volume 

of structural material, and consequently, the strength of the material reduces and this 

phenomena is what is known as fatigue. So, fatigue is a essentially a of phenomena 

involving of progressive fracture. So, it is a fracture of a structural member due to 

repeated cycles of load. Fatigue is the primary mode of failure for metals subjected to 

oscillatory loads. So, this is a major source of failures in aircrafts, railway vehicles, 

ships, bridges and rotors.  
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Actually structural components that can carry high constant amplitude loads fail under a 

substantially lower magnitude fluctuating load. This is due to, basically due to fatigue, 

and during fatigue failure, maximum stress could be well below the tensile strength of 

the material but the structure fails after oscillating for a finite number of cycles, that is, at 

failure, the response level could be well below the limits of first passage failure. 
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So, it is a failure could be quiet catastrophic. So, it is important to obtain a rational 

description of how to model these failures. So, the objective of this discussion is to 

obtain a probabilistic description of fatigue damage in structures which are driven by 

random excitations. For example, the types of questions that would like to ask are - what 

is the expected rate at which fatigue damage accumulates? What is the probability 

distribution of the life of the structure? What is the influence of randomness in structural 

properties? How to characterize the reliability of structure against fatigue failure? So, we 

will consider some of these questions and see how we can progress.  
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Now, if you look at time histories of a stresses, the various possibilities exist. For 

example, in this first one, there is an oscillatory load about a mean level. That would 

mean the stress cycles are completely reversed and these are called completely reversed 

cyclic stresses. This oscillation could occur about a non-zero mean. So, the cycling 

occurs about a non-zero mean which is not 0 or it could be such that there is no stress 

reversal, but actually there is a for instance released tension. Here, the stress never enters 

the compression zone. It remains tensile but the tensile stress magnitude keeps 

oscillating.  
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Now, here, we introduce certain terms S max S min and S mean are the maximum 

minimum and arithmetic mean of this stresses. Delta S is a stress range S max minus S 

min and the alternating stress amplitude is given by delta S divided by 2.  
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The stress amplitude need not be harmonic. The amplitude could vary. For example, 

here, there is a stress time history where up to say 1.5 second there is one amplitude. 

Beyond that, the amplitude increases. 



Now, the change in amplitude could also be accompanied by change in the mean levels 

about which these oscillations occur. These are varying amplitude, varying mean 

stresses, or all the stress could be a randomly varying in time. It could be multi 

frequency. The, here, what we are shown is a narrow band random process. So, here, 

there is no, the definition of a cycle here is not immediately evident unless we clarify 

what exactly that is. 
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Just we will illustrate here I am showing certain measure time histories. For example, in 

this graph, we are showing the time history of the strain on a steel girder bridge as a train 

formation crosses the bridge at a particular velocity. So, this is second graph is similar 

result when a longer formation may be free traffic crosses the bridge. So, the cycle that 

we see here typically corresponds to the passage of one locomotive and carriage wagon 

and this wagon themselves we will have multiple access and these small oscillations 

about a higher level represent, you know, oscillation due to passage of axils of the same 

wagon.  
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Now, we use what is known as S N curves to characterize fatigue failure. This S N curve 

essentially is a plot of cyclic stress level versus number of cycles to failure; that means if 

you take a test coupon and subject it to cyclic loaded into a given stress value after 

certain number of cycles of oscillation, this coupon will fail and the number of 

oscillation as a function of stress level is known as a S N curve. So, this is something that 

is experimentally obtained. This also is known as Olar curve.  

The test specimen is typically a cylindrical specimen subject to uni-axial cyclic stress or 

a small cantilever beam under bending oscillation. The stress amplitudes are kept 

constant. We could also similar actual real life stress cycles in a fatigue test but we can, 

this is not what we are discussing in this lecture. 
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A simple model for this so called S N curves is of this form N S to the power of b is 

equal to c - where b and c are constants, and if you take every them of this, we get log N 

plus b log S is equal to log c. That would mean on log scale. S N curve is a straight line 

with slope minus 1 by b and intersect log c.  

Now, in reality, what happens is - below a particular stress level, the, there would not be 

failure due to cyclic oscillation is not possible and this limit of stress is known as 

endurance limit, and we are considering stress levels above the endurance limit in our 

studies. So, number of cycles from this formula N S to the power b equal to c. We can, 

in, for this case, it is N S to c to c into S to the power minus b for S greater than S not is 

0 for S less than or equal to S naught if you taking to account the effect of endurance 

limit.  
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Now, in the S N curve approach, it is an integral approach which actually does not deal 

with physical phenomena that would be taking place within the material which results in 

loss of mechanical integrity. Actually does not separate the crack initiation and crack 

propagation stages, considers only the total life to fracture. 
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Now, we obtain S N curves in the laboratory conditions and then we want to extrapolate 

this information to the field conditions. So, laboratory testing is done on coupons just 

like with the way we find Young’s Modulus of a, say material using coupons. In the 



same sense, S N curves are also obtained in a laboratory conditions on test coupons, but 

these results need to be extrapolated to free condition.  

When we do that, there are factors like nonzero mean stress, then varying stress 

amplitudes, an environmental conditions like temperature, humidity, corrosive media, 

etcetera will start influencing the results, and also the size shape and surface finish of the 

member under consideration also have significant influence on the fatigue performance. 

The frequency of cycling could also important but many times this is not a very crucial 

factor. 
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In the experimental data, actually large scatter is observed is reflects the influence of 

uncertainties, and one actually plots, for example, the S N curve, one gets an, if, in 

experiment there where green straight line would not emerge. So, at any given point, you 

can draw a probability distribution curve, density function, and one can specify the S N 

curves in terms of S N and probability curves. This density function could be modeled as 

lognormal or Weibull. Endurance limit have already explained; it is a stress level below 

which the specimen seems to last in definitely.  
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Now, we use what is known as Palmgren Miner rule to find out accumulation of a fatigue 

damage. Suppose during the life of the structure on x axis, I am plotting time, and on y 

axis we are plotting stress amplitudes. Suppose the structure undergoes N 1 oscillations 

at stress level S 1 ( Refer Slide Time: 11:00) and N 2 oscillations that stress level S 2 and 

N 3 at N i; N i at stress level S i and N N at stress level S N. Now, if the specimen is left 

to oscillate stress level S 1, it will required as a capital N 1 number of cycles for failure. 

Similarly, if the specimen is left to oscillate only at S 2, it may required N 2 number of 

cycles to failure and these capital N 1 capital N 2 etcetera are obtain from the S N curve. 
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Now, according to Palmgren miner hypothesis, what we do is we find out the number of 

cycles at different stress levels - S 1 is n 1, S 2 is n 2, S 3 is N 3 and so on and so forth, 

and for this stress level from S N curve, we get the number of cycles to failure. We 

define in incremental damage as the ratio of n 1 by capital N 1. Similarly, incremental 

damage at stress level n 2 by capital level N 2 and so on and so forth. We define what is 

known as cumulative damage as the sum of this incremental damage at any given stage. 

For example, at the end of application of S 2, stress level S 2 for N 2 number of cycles, 

the accumulated damage would be n 1 by capital N 1 plus n 2 by capital N 2. 
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Now, according to the palmgren miner hypothesis at the end of m th cycle of oscillation, 

we get the accumulated damage as capital delta is summation i equal to 1 N i by capital n 

i. Now, if I use the formula for the S N curve, I can write this as N i S i to the power of b 

by c because capital n i is related to S i and the constant b and c. According to palmgren 

miner hypothesis, the condition for failure is that this cumulative damage should reach a 

value of 1. So, consequently the safe limit is i equal to 1 n i S i to the power of b divided 

by c must be less than or equal to 1. If this miner sum crosses 1, the specimen deemed to 

have failed according to this theory. 
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A few remarks on the palmgren miner theory could be made. In this theory, the order in 

which stresses are applied does not matter; that means the damage is assume to take 

place in a linear manner. In reality, actually failure is sensitive to order of loading. A 

high stress level followed by low stress level would produce accumulated damage of a 

different kind than the other way round where a low stress cycle is followed by high 

stress cycle.  

The method as such does not provide any means of assessing the effect of variability in 

constant b and c etcetera, and damage is assume to accumulate at the same rate at a given 

stress level without regard without regard to the past history; that means it does not take 

in to account the memory. In actual experiments, the miner sum at which the failure as 

occur actually varies over very large range, that is, 0.25 to 4 under harmonic loading, but 

for random time histories where no ordered sequence of high and low amplitudes exist, 

the miner sum is reasonably good 0.6 to 1.6. 
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Now, the question is we are not so much interested in the limitations and scope of 

palmgren miner hypothesis etcetera. What we would like to consider is how can we 

extend the palmgren miner hypothesis to random stress time histories. Now, let us 

assume that the stress time history is a 0 mean narrow band Gaussian random process, 

and consequently if you consider stress to be a time history, there are no discrete stress 

levels here, is there not harmonics of different amplitudes following each other. So how 

do we proceed?  

(Refer Slide Time: 15:10) 

 



So, for example, this is a sample of a narrow band time history, time history of a narrow 

band random process. The notion of cycle is not very evident here. This is a narrow band 

process, but in a broad band process, as we already seen the notion of a cycle becomes 

much less apparent. 
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Here, what we define is function D of T. We define as integral 0 to t chi of T dt - where 

chi of t is a rate of accumulation of damage. This is, this we write as N of t into S to the 

power of b of t divided by c and this is fashioned after the formula for accumulation of 

damage given by n i S i to the power of b divided by c. 
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Now, the question is - if S of t is a as I said 0 mean narrow band stationary Gaussian 

random process, how do interpret these quantities? If the stress time history is a random 

process, how do interpret S of t n of t in this expression? So, what we do is, we take S of 

t to the peak magnitude and n of t to be the rate of peaks, and these we have studied 

already. For a narrow band process, rate of peaks is same as rate of 0 crossings for 

narrow band processes; that means every time a 0 is crossed, there will be a peak as you 

see here. For example, there is 0 crossing; there is a peak. So, that is a property of a 

narrow band process; that is not true for wideband process but I will to start with will 

limit or discussion to narrow band process. 
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Now, our objective is to characterize this function D of capital T, is we are interested in 

knowing for example, what is probability that d of capital t is less than or equal to 1. 

That is a question that we would like to answer. 
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Now, the join density a function of S and N is actually not available. So, what we 

actually know? We know the peak magnitudes are Rayleigh distributed for narrow band 

processes and expected value of n is given by sigma 2 divided by 2 pi by 2 pi into sigma 



1 - where sigma 2 is the standard deviation of the derivative of the process and sigma 1 is 

the standard deviation of the palmgren process.  

Now, we make in Adhoc assumption that S and N are independent. So, we assume that 

join density function PSN s, n is product of the marginal density functions. So, based on 

that, we find the expected value of chi of t which is the rate at which the damage is 

accumulating, and since we know this expression and we know this probability density 

function, we can write for this expected value this form. This is Rayleigh density 

function. So, consequently this will be the expected value of S to the power of b, and this 

is, this quantity is the actual expected value of n of t, which is again known from study of 

low level crossings and 0 crossings of random process. 
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Now, we recall that the integral of this type 0 to infinity y to the power of 2 nu u minus 1 

exponential minus y square dy is actually given by the gamma function. Now, 

consequently we can express the expected value of chi of t in terms of the gamma 

function and this is what we get. So, at least we are able to proceed and get the certain 

Adhoc assumptions the average rate at which fatigue damage is accumulating in terms of 

the standard deviation of the parent process, standard deviation of the derivative process 

and the material concuss c and b.  

 



Now, we can return to the problem of finding expected value of d of t. Now, if process is 

stationary, we see that sigma 2 and sigma 1 are independent of time. So, they can be 

pulled out and this 0 to t d t will become this. So, we have this expression for d of t. That 

is average of the accumulated damage at time instance capital T. 
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Now, we could visualize a T star such that these expected value of D of T becomes 1. 

Now, if you do that, that T star is will be 1 by expected value of chi of t. So, to a first 

approximation, we can take T star to be the mean fatigue life. So, if you know the 

random stress time history and you know its prospect density, you can derive the 

variance of the process and its derivative process, and if use this formulary, you have a 

handle now that, you can at least, you are at least in a position to evaluate the mean 

fatigue life. This is for a stationary narrow band Gaussian random process.  
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Now, a few remarks are in order. In this particular derivation, we have taken the constant 

b and c to be deterministic, but if you happen to know the join probability density 

function of b and c, we could incorporate that into the analysis. So, what the expectation 

that we have got can be interpreted as a conditional expectation and the unconditional 

mean can be evaluated by an integration with respect to the conditional probability 

density function to the joint probability density function of b and c. Is worth considering 

the equation is T star indeed the expected fatigue life. Now, we will this needs to be 

consider carefully. So, for that purpose, we will consider capital l to be the life time. Life 

time is a random variable. So, condition for failure that is a definition of capital l is 0 to l 

chi of t d t is 1; that means the expected value of this integral 0 to l chi of t dt is 1. 
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Now, this is a condition that we actually need to analyze, but what we have done is we 

have place this integration, the random quantities in this expression is L as well as chi of 

t and there mutually dependent. This integral obviously not equal to this. This is 0 to 

mean of L. Then mean of the integrant dt is not the, actually the condition that we are 

looking for all those. This is what we seen to have utilized. So, the conclusion is T star, 

is not the exact expected fatigue life, but if first approximation, we could take it as an 

approximate, an acceptable estimate, and if you want to really evaluate this integral in 

exactly, this is the, we do not have adequate information on the uncertainties here. 

Therefore, we will not able to proceed anyway.  

Now, we have derived now the expression for expected value of chi of t. With little 

effect, we can also derive the variance of chi of t and we can also derive variance of 

capital d of t, and we have based our assumption on the fact that where assuming that the 

stress time is to the narrow band process. If the process is broad banded, then the notion 

of a cycle and amplitude becomes less apparent as I have already said, but there are 

algorithms for counting cycles and some of the algorithms are range per counting range 

flow counting etcetera. They are available one could also deal with broad band time 

histories. 
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So, what have done in this brief presentation is to illustrate how properties of level 

crossing and peak distribution etcetera could be utilized to get a theoretical estimate of 

average, the expected life due to when failure is defined with respective fatigue. Now, 

we will move on to another application. This is analysis of vibration in high frequency 

regime and how we can use random vibration principles for this. Now, what is high 

frequency vibration? We consider that a structure is vibrating in the high frequency 

regime. If it is response at any frequency, consists of significant contributions from a 

large number of modes.  
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Now, what are the basic problems in such, such, basic difficulties in such problems? For 

purpose of illustration, I have shown here the transfer function of a, frequency response 

function of a thin walled stiffened cylindrical shell, and as you can see here, there are 

several peaks which are closely space. We know that in frequency response function, 

peaks occur wherever there is a (( )) frequency and their variation is also governed by 

value of mode steps at point of driving at point of measurement.  

So, if we consider segments like this, it is very clear that there are large number of 

natural frequencies that are crowded in this frequency range. So, if you were to drive the 

system harmonically at a single frequency, it is expected that to compute the response, 

we need to consider contributions from several neighboring modes. In that sense, we call 

this type of oscillations is high frequency oscillations. This is not true for example in the 

case of say earthquake response of tall buildings, but whereas the in acoustic response of 

missile shells or aircraft wings etcetera, there will be large number of natural frequencies 

or in the frequency range that we are interested. I will clarify the nature of the problem as 

we go long. 
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Now, there is one approach to studies such high frequency vibration and that is known as 

energy flow models, and one of the techniques are one of the methodology there is what 

is known as statistical energy analysis, is a frame work for analyzing high frequency 

vibration analysis. Now, the structural behavioral at high frequencies is very sensitive to 



minor changes in structural parameters and details of modeling. A deterministic 

approach to modeling structural system parameters is inappropriate; that means if a 

structure is undergoing high frequency oscillations, a slight change in say boundary 

conditions or some of the parameters of the problem will dramatically alter the behavior 

of the structure.  

So, the essence here is that we need to consider this extreme sensitivity of the response 

with respective changes in system parameters. Description of dynamic behavior of 

structural joints with increasing frequencies become difficult. This calls for experimental 

approaches to characterize structural behavior of joints. So, in typical structure like 

automobile vehicle or aircraft structure, there will be several joints, client joints, point 

joints, etcetera and their behavior at high frequencies becomes quiet complicated, and if 

use methods like finite element method modeling, the flexibility of the joints becomes a 

very complicated issue as you go very higher up in the frequencies. 

So, the, this statistical energy analysis procedures essentially take in to account these 

difficult issues. First thing, it does is it treats the vibrating system as being randomly 

parameter; that means a natural frequency is more shapes of this structure is treated as 

being random in nature. The word statistical in statistical energy analysis refers to 

uncertainties in specifying the system parameters. The excitations could be random or 

could be deterministic. So, the stochastic nature in these problems come originate due to 

randomness in system properties.  
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In such problems, detailed characterization of structural response in terms of 

spatiotemporal variations of displacement stress and strain fields become unwieldy. 

Macro level description that involves space time frequency averaged response quantities 

such as vibration energy content in spatial domains within a structure may be adequate.  

So, the method of analysis is aimed at establishing spatial distribution of vibration 

energy stored in the structure as a function of frequency.  
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So, I will just illustrate what, what the, what that means, what I said. Consider a simple 

truss here which is carrying a force f of t. Let us assume that the frequency range of f of t 

spans several decays of frequencies. It may go up to a few tense of hertz to couple of 

thousands of hertz. We could use finite element method to analyze this problem, but 

then, if we need to compute the natural frequencies of this structure over a frequency 

range of say 2 kilo hertz, there could be several may be hundreds or couple of hundreds 

of natural frequencies which could lie in that frequency range.  

Now, if we indeed perform, that would mean that we need to model this structure in 

greater detail. We need to select element which are quiet small in size. We should have 

large number of such elements that intend requires, that we should be able to know the 

property of this structure at smaller levels, smaller spatial levels and that may not be 

always possible. Similarly, the question on how does the join behave as a frequency 

increases becomes crucial. 

So, any slight change in system parameters here can dramatically alter the behavior of 

the system. So, therefore, if you are interested in for example displacement stress or 

strain at any given point in the structure, we end up doing huge amount of calculations, 

but that type of information may not be needed to take decisions in this types of 

problems. What do we may like to know is what is the total energy that resides in this 

member or how does a total energy gets spatially distributed in the system.  

For that purpose, what we do is we divide the truss into a set of subsystems. Each one is 

an energy carrying unit, and we would like to now consider the problem of this force into 

the velocity here will be a power input to the system. That power should be stored at 

various points in the structure and they, which are they more energetic members, and if 

that level of energy is high, how do I reduce it? What are the vibration paths that take 

this energy two different parts in the structure? This type of questions are asked in, in, 

statistical energy analysis. 
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So, statistical energy analysis can be viewed as a branch of linear vibration theory with 

some of the following characteristic features. Here, the built up structure is taken to be 

random in nature. It is divided into a set of subsystems and the subsystem natural 

frequencies are taken to be identical and independent random variables distributed 

uniformly in the frequency range of interest. That could mean the natural frequencies of 

the subsystems are taken to constitute Poisson points on the frequency axis; that means 

natural frequencies are like number of natural frequencies is a Poisson random variables. 

The external excitation that are often random in nature are specified in terms of power 

input, and the governing equation for system behavior are described in terms of power 

balance between subsystems. We do not write the equilibrium equation the way we do in 

finite element method. We simply keep track of energy balance. I will come to some 

details.  

The primary objective of the response analysis is to determine the spatial distribution of 

total vibration energy residing in the system. It is not to obtain, for example, time 

histories of stresses, strain and displacement at every point on the structure. Here, it is a 

macro level description where certain spatial extends are identified as subsystems, and 

what happens within that spatial extend in terms of a single number is what is being sort. 
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Here are some references - the book by the Lyon and Dejong theory and application of 

statistical energy analysis. There is an introductive paper, and a review paper which 

provides some background to this subject. 
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Here, there is another example where there are a stock of three plates. This could be a 

typical situation in solar panel arrays in satellite. This e raise to i omega t is a forcing 

function that acts on this and this frequency can covers several, you know, it could run 

from twenty to say two kilo hertz. What we are interested in knowing is under this kind 



of excitations, how does vibration energy reside in different parts? So, we could model 

this in terms of subsystems as shown here 1, 6 and 11 correspond to these three plates. 

This, 1, 6 and 7, 1, 6 and 11 correspond to these three plates and 2 3 4 5 etcetera, 7 8 9 

10 are this coupling members. We are not interested. It may again emphasis in finding 

stresses strain and displacement in various points on the structure. 
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Now, how do we specify inputs in statistical energy analysis? We do not know time 

history of the force but we would like to provide the input power. This input power is 

derivable in terms of the input power spectrum and the input power receptance; that 

means the force into the velocity, applied force into the velocity in the direction of the 

force is a power. Force into displacement is a work done and for that work done for a 

unit time is the input power, and in terms of a spectrum if you want, you have to do 

certain calculation. Now, we consider inputs to be in the high frequency range say 20 to 

20 k kilo hertz, these excitations could be random or they could be deterministic also. It 

is not important that the randomness resides in the excitation. The randomness is in the 

system parameters.  
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How do we model a system? We model a system as collection of energy storing elements 

called subsystems. They are not like finite element elements but they are much more 

macro level description. They involve much, you know, macro level description of the 

system behavior. We focus only on linear and randomly parametered systems. The 

behavior is linear but the system is randomly parametered.  

This randomness in system parameters could be introduce at the level of definition of 

mass stiffness and damping as being random or alternatively we can directly characterize 

the natural frequencies and more shapes of the subsystems as being random. We need not 

have to specify mass stiffness and damping as random but since solution is being 

obtained in model domain. The model parameters like natural frequency, more shapes 

participation factor model damping etcetera could be taken as random. 
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And what are the response quantities we look for? We look for steady state, time 

averaged, total energy stored in each subsystem often averaged over frequency and 

ensemble of random realizations; that means we are looking for grossly averaged 

features. We are not looking into details. It is average over time, average over space, 

average over frequency band and it gives a broad idea about different levels of energy. 

They stay at, they decide at different levels. 
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How do we derive the governing equation? What are the governing equations in SEA? 

The governing equation in SEA represents condition of power balance and it has the 

form the vector of power input is equal to a matrix multiplied by energy at different 

energy residing in different subsystems. This matrix is known as coupling loss factor 

matrix. I will talk about this shortly. This is essentially a representation in the steady 

state. We do not normally consider transient behavior using SEA, and the whole analysis 

is done in frequency domain.  
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Now, we can ask are there any theoretical foundations for this procedures? Actually 

there is no such regress theoretical foundation. There is no, for example, a variational 

principle from which we can derive SEA equations nor there is any systematic proof that 

as we increase the number of subsystems in SEA formulation. The answer would 

converge. So, it is not like a method like finite element method but it is a heuristic 

procedure which is found to work well when other methods do not perform.  
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Now, the, having said that there is no theoretical basis but there exist an idealize situation 

where statistical energy analysis basic results of statistical energy analysis can be shown 

to hold good. So, what is that system? This is simple system where two oscillator which 

are couples, a coupling spring. The two oscillators are driven by F 1 of 2, F 1 of t and f 2 

of t. These are taken to be independent Gaussian White Noise Processes. Now, the 

question that would like to answer is this F 1 of t will do some work on this 

displacement. Therefore, there will be a power input here and there will be a power input 

here and how does vibration energy gets shared between this subsystem and this 

subsystem. 
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So, what we do is we model the problem using two subsystems - this is one oscillator 

this is second oscillator there is a coupling k c, and please note that the coupling element 

do not have, does not have damping. It is a conservative coupling. So, what happens? 

There is a power input to the first system through F 1 of t and part of the power is 

dissipated through damping and part of that flows to the, energy flows to the second 

subsystem.  

In the second system because F 2 of t, there is some power input, and part of it is 

dissipated and part of it flows to a subsystem one. So, now, we set up this simple 

equation that pi in 1 is equal to pi 1 2 minus pi 2 1 plus pi diss 1. So, pi in 1 must equal 

to this. Similarly, what comes in to second system? Pi in 2 plus pi 1 2, and what goes 

out? Pi diss 2 and pi 2 1. So, pi in 2 must equal to pi 2 1 minus pi 1 2 plus pi diss 2. So, 

this is, there is no approximation here. This is an exact. 
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Now, let us try to evaluate the expressions for this input powers and maybe I will take 

expected values and see what happens. So, to do that, we will write the equations of 

motion. Now, the equation of motion consist this simple to derive the 2 degree 

approximation, 2 degree freedom model. It guess couple through the spring k c and this 

is reasonably straight forward, and we are assuming that F 1 of t is 0 mean and it is a 

white noise with strength i 1 and F 2 of t also is a white noise with strength i 2 is 0 mean, 

and we assume that the uncorrelated; that means they are independent because we are 

assuming Gaussian White Noise models. The equation can be recast as in this form 

where we are taking the force acting on the first system through the coupler on the right 

hand side.  
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So, we assume the system since the system is damped, we assume we assume that as c 

tense to infinity the system reaches study state. The input stationary; system is damped. 

Now, we will digress for a moment. If you consider a single degree freedom system 

under a white noise excitation in the steady state, if you want to find out the cross power 

spectral density function between displacement and applied force, this can be derived in 

terms of this well-known expression, and the Fourier transform of the response is related 

to the Fourier transform of the input through the system transpose function, and we get 

this S x f of omega to be H of omega into S F F of omega. Since excitation is white 

noise, I get this H of omega into S naught. 

Now, it is a cross covariants is a Fourier transform of this. So, I get this expression. Now, 

a tau equal to 0. I will get R x of f 0 R x f of 0 can be obtained by putting tau equal to 0 

but you can see that the integrant is nothing but Fourier Transform of the impulse 

response function. So, R x f of tau is S not H of tau by 2 pi. Now, in this if we put tau 

equal to 0, I get R x f of f is 0 which is S not h of 0 by 2 pi. Now, we know definition of 

h of 0 is 0. Therefore, r x of 0 is 0. So, that result I will be using so that this miner 

digration to make sure that, that is, registers on your mind. 
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Now, we would also need another result. If X of t and Y of t are jointly stationary, the 

expected value of the product of n th derivative and m th derivative of X and Yy as 

shown here is given by this. This we have derive when we introduce the basic motions of 

mean square derivative for random processes. 
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Now, we can consider certain expectations F 1 of t into y 1 of t is 0 using the logic that I 

just not described. We can also show that sum of these are 0, and since process is 

stationary, the process and its derivative at same time are uncorrelated. So, again, that 



could mean these expectations are 0, and expected value of y 1 into y 1 double dot using 

this formula can be shown to be given by this, and we have several other expectation that 

we need when work this equations and I leave it on an exercise to verify each of these 

statements. These are already covered in the lectures. So, it is a good time to check you 

are understanding by showing that each one of these statements are true. 
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Now, what is that we are interested in? We are interested in the average power input, that 

is, expected value of pi 1 in. What is power input to the first mass that is applied force F 

1 of t into dy 1 would give the work done and into dy 1 by d t would give the work done 

for unit time. So, pi 1 in expected value nothing but expected value of F 1 into y 1 dot. 

Similarly, pi 2 in will be f 2 into y 2 dot. What is power dissipated it is c 1 y 1 dot 

square; pi 2 dissipated is this. What is pi 1 2? Pi 1 2 is, pi 1 2 is the force in the spring 

acting on velocity of this. So, that would, you can show that, that would be given by k c 

into y 1 into y 2 dot and pi 2 1 will be k c y 2 into y 1 dot.  
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Now, if since y one of t and y 2 dot of t is 0 and it not 0, it is equal to minus y 1 dot y 2 t 

follows that pi 1 2 is equal to minus pi 2 1. Now, we can recast all these equations in a 

matrix form. So, on the left side, I have pi one in; here, pi 2 in, and all other expected 

values I mean I am writing, I mean you have to recast that set of equations in this form 

we get this equation. This is a straight forward representation of the equation that we 

consider just now. 



Now, in this, we will now consider some of the rows. Suppose if you consider the first 

two rows, I get c 1 into y one dot square expected value plus k c into y 1 y 2 dot is equal 

to F 1 of t into y 1 dot. Similarly, c 2 y 2 dot minus k c into y 2 y 1 dot is this. These two 

equations are nothing but the statement of law of conservation energy, that, is pi one diss 

plus pi 1 2 is pi 1 in pi 2 diss minus pi 1 2 is pi 2 in. So, things gel-well, there is no 

problem. 
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Now, if you consider rows five and six in that equation and take a look in this equation. 

You can show that what they are telling as is the average kinetic energy in the first 

system minus plus average potential energy in the first system is given by this. Similarly, 

this for the second system; this is the equation. Now, if for instance, if coupling spring is 

absent, then we know that in the steady state average kinetic energy, same as average 

potential energy and that again this consistent. 
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Now, if we assume that this coupling spring is much smaller than k 1 or k 2, that means 

the coupling is weak. This is one of the assumption that is made in statistical energy 

analysis, and if I now consider expected value of y 1 into y 2 dot, you can derive this 

expression and you have to carefully look at this expression. This is expected value of y 

1 into y 2 dot is nothing but expected value of pi 1 2 multiply for the k c. We denote this 

multiplier.  

See, the term inside this bracket is of importance. You can see that this is pi 1 divided by 

c 1 into expected value of pi 1 in and is m 2 by c 2 into pi 2 in, the second term. So, what 

this is telling is that the energy flow from 1 to 2 is proportional to the, difference in 

energy at difference in the power input between the first and the second system some 

scaled factor. Now, we will manipulate this and see what it tells us. 
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Now, again under the assumption of light coupling, we can show that the power input is 

in steady state is dissipated by the system. So, that is c 1 y 1 dot square. So, I can write 

for pi 1 mean 2 c 1 m 1 into k e 1. Similarly, expected value of pi 2 in can be given by 

this expression, and we use the fact that in steady state, average kinetic energy and 

average potential energy for the two systems are equal, and if I now substitute, I get what 

is known as fundamental statistical energy analysis result namely that, average energy 

flow is proportional to the difference between, the energy between two subsystems, the 

energy in the two subsystem; that means just like thermal energy flows from hot spot to 

cold spot, the vibration energy also flows from places of high energy concentration to 

low energy concentration. 
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So, this is the essential fundamental result of SEA and this is, this has basis in random 

vibration principles. That is what I am trying to discuss. Only that aspect of SEA is what 

I am discussing. We have consider two oscillators. Now, what happens if there are two 

continuous systems? So, for example, plate is coupled to a cantilever beam. This plate 

itself is a multi-model subsystem. It has several natural of frequencies in its uncoupled 

state. If I were to perform a model analysis in the frequency range of interest, there may 

be several modes; that means this plate will be represented by a set of single degree 

freedom systems corresponding to the normal modes in the independent, generalized 

coordinates of this plate. Similarly, the cantilever beam also can be represented as set of 

oscillators. 
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Now, that we notionally represent like this. This first picture here is, this is a plate and 

these are the oscillators that correspond to generalize coordinates in the frequency range 

of interest. Similarly, this is a beam where there are few more oscillators here which 

corresponds to the generalize coordinates of the cantilever beam. This system receives 

some power pi 1 in and it dissipate some power pi 1 diss. Similarly, this system receives 

pi 2 in and dissipates pi 2 in. Now, we have studied how energy exchange takes place 

between two oscillators. Now, what we do is we assume that the energy flow from plate 

to cantilever consists of energy exchange between the oscillators in this set with 

oscillators in this set; that means this oscillator exchanges energy with this, this and this. 

Similarly, this oscillator exchanges energy with all the oscillators here. So, that means all 

these oscillators exchange energies.  
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Now, the average power flow from alpha to beta - that means plate to the cantilever - is 

given by the, a constant multiplier which is again dependent on the plate and cantilever 

characteristics and in some sense in an energy difference between the two plates, that is, 

total energy divided by number of oscillator that are participated. What is an energy 

density or the concentration of energy is total energy divided by number of oscillator? It 

is like temperature in thermal analogy. So, it is a hot means total energy divided by 

number of modes is high. So, here, total energy divided by number of modes here. So, 

the flow takes place from hot spot to the cold spot and that the energy flow is 



proportional to the energy difference and its proportionality constant involves the 

properties of the structure.  

So, we have omega is a central frequency; delta omega is a frequency bandwidth and e 

expected e alpha is total average energy in the subsystem alpha and n n alpha is a number 

of modes per unit frequency interval for the subsystem alpha; that means omega, that 

defines this that the way energy is defined this, this, factor is relevant. So, what this 

means is - energy flow between conservatively coupled linear subsystems excited by a 

broad band random excitation is proportional to the difference subsystem average model 

energies. Now, this proportionality constant etcetera - this is known as coupling loss 

matrix, coupling loss factor matrix - the elements all that have to be determined. By, in 

this particular case, when we discuss two oscillators, we derived this h 1 2. That is shown 

here using random vibration principles.  
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So, the S e a equation, the equation that you will actually solve when you apply 

statistical energy analysis will be in this form. The unknowns are these energy levels E i 

and E j. This is E 1 and E 2 in this particular 2 subsystem problem, and the excitations or 

the inputs in terms of power pi in 1 pi in j. This is known; these are unknowns, and this is 

analogs to are stiffness matrix but this is known as matrix of coupling loss factors. 

Typically, this coupling loss factors could be estimated experimentally where you know 

the difficulty is associated with joint flexibilities, I mean randomness etcetera the system 



properties can be taken in to account or analytically using wave propagation concepts. I 

will not get in to that.  
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The same logic if you applied to a set of n subsystems, we get the unknowns are E 1 E 2 

E 3 E n s - where n s are the number of subsystems. Pi in 1 pi in 2 and pi in n s are the 

inputs, and this is the matrix of coupling loss factors which has to be determined as a 

experimentally or by analytically, and the principles of random vibration analysis are 

relevant in this context.  
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So, this subject of statistical energy analysis quiet worst and I have given few of you 

suggestions for further reading. There is a review paper by Fahy’s statistical energy 

analysis a critical review, and the two papers - one by Langley and another by Keane 

which contain quiet useful information. Now, with this, we will conclude this present 

lecture. In the next set of four lectures, we will consider certain problems which basically 

would help you to learn the subject. So, the discussion on principles of random vibration 

analysis and the methods and the basic problems etcetera now closes in the remaining 

four lectures of this course. We will consider a set of problems and tackle them. We 

conclude this lecture at this stage.  

 

 


