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In the previous lecture, we considered the modeling of earthquake ground accelerations 

at any point in terms of three components. And, we saw that there exist three axes along 

which the three components can be approximated has being uncorrelated and that 

facilitates the formulation of the problem. 

(Refer Slide Time: 00:42) 

 

We also briefly saw some issues associated with spatial variability of earthquake ground 

motions. And, we summarized the major phenomenal-logical features that are associated 

with spatial variability of earthquake ground motions. So, as I mentioned, the data for 

making such models have become available since 1980s, where dense strong motion 

seismic arrays have been established at a few places on the earth’s crust. One of that is in 

Taiwan. And, in a region of radius of about 2 kilometers, there are about 30 strong 

motion oscillograms distributed along three concentric circles. And, it is this array has 



recorded a few events and that data has formed the basis for developing models for 

strong ground motion, which takes into account spatial variability features. 

(Refer Slide Time: 01:41) 

 

So, we are discussing in this part of the lecture – our focus will be on land-based 

structures. There are multiply supported structures like piping in industrial complexes, 

where the piping structures are supported on the primary system at different say points 

along the height. And, in the event of an earthquake, these piping structures are again 

subjected to differential support motions. We will briefly touch upon this problem, but 

our discussion will be mainly focused on land based structures like bridges, dams and so 

on and so forth. For this class of problems, it has been found through studies in the 

existing literature that the assumption of uniform support motion is not guaranteed to 

provide conservative estimates of the response. It could be conservative or it may not be 

conservative. 



(Refer Slide Time: 02:43) 

 

In the last lecture, we also saw why spatial variability occurs and we considered four 

different effects. The first one was wave passage effect, where a wave front reaches to 

recording stations at different times, because the wave front is inclined to the plane of the 

ground. That leads to delays in arrival times. 

(Refer Slide Time: 03:03) 

 

And, the other one was the extended source effect, because energy gets released along a 

fault line. The source of energy is an extended line and consequently the energy is 



released in packets along this line at different time instance. And, the effect of that is felt 

at stations 1 and 2 at different times. And, this effect is known as extended source effect. 

(Refer Slide Time: 03:25) 

 

And, the waves propagate through inhomogeneous medium. They will be scattered and 

that also induces certain variability in the ground accelerations. 

(Refer Slide Time: 03:35) 

 

And, attenuation effect refers to the decay of the waves as it travels through the earth 

medium. And, if the distance through which the waves travel changes the attenuation 

effect also changes. And, this perhaps is not that very important for land-based 



engineering structures. So, this effect is not that crucial compared to the other three 

effects. 

(Refer Slide Time: 04:01) 

 

So, the questions that we wish to ask now are – what are the phenomenological features 

associated with response of structures subjected to spatially varying ground motions? 

When is it important to consider these effects? And, how to model spatially varying 

ground motions as random processes? And, how to develop these models based on data 

and based on phenomenological considerations? And, how to develop model 

combination rules when the inputs are specified in terms of a set of response spectra? 



(Refer Slide Time: 04:35) 

 

Let us consider some of these questions. Now, if you consider an engineering structure 

schematically shown here, this structure has three supports and it is subjected to… say it 

is a planar structure. So, there are six components of ground motion: u g 1, u g 2, u g 3, u 

g 4, u g 5, u g 6. Now, we can model these six components as a vector random process. 

And, our objective is to characterize the response of the structure when these six 

components are mutually correlated random processes. 

(Refer Slide Time: 05:10) 

 



Now, we can quickly recall how do we describe two random processes. Suppose we have 

random processes u of t and v of t, we can define their covariance matrix. It is given by C 

UU of t 1 comma t 2, C UV of t 1 comma t 2 and so on and so forth. And, if process is 

stationary, we get this as C UU tau, C UV tau, C VU tau and C VV tau. And, C UV of 

tau is given by U of t into V of t plus tau. This is same as V of t plus tau into U of t. 

Therefore, C UV of tau is C VU of minus tau. 

(Refer Slide Time: 05:50) 

 

The associated power spectral density function matrix has diagonal terms, which are the 

auto power spectral density function and the cross terms, which are the cross power 

spectral density function. The auto power spectral density functions are real valued; 

whereas, the cross power spectral density functions are complex valued. And, the 

definitions are shown here. This we have discussed in some of the earlier lectures. And, 

the power spectral density function has certain properties like S U V of minus omega is 

same as S V U of omega; and S U V conjugate of omega is S U V of minus omega. 



(Refer Slide Time: 06:26) 

 

So, this is the definition of the relationship between cross power spectral density function 

and cross correlation function or the cross covariance function. We write the cross power 

spectral density function in terms of an amplitude and a phase; and, this quantity is the 

amplitude of cross PSD function and this phi is the phase spectrum. We call… The real 

part S U V of omega can also be expressed in terms of real and imaginary parts; the real 

part is called co spectrum; and, the imaginary part is called quadrature spectrum. So, we 

have amplitude and phase, co spectrum and quadrature spectrum. 

(Refer Slide Time: 07:04) 

 



We define a quantity known as complex coherency function, which is the ratio of the 

cross power spectral density function to the square root of S UU of omega into S VV of 

omega. Here it is assumed that the denominator is not 0; if denominator is 0, this 

coherence function is taken to be 0. This itself is a complex valued function and we can 

write this again in terms of an amplitude and a phase. And, this quantity, the amplitude is 

known as coherency function. So, that is the ratio of modulus of S UV of omega to 

square root of S UU of omega into S VV of omega. We can show that the coherency 

function is bounded between 0 and 1. And, if coherence function is 0, it implies lack of 

linear dependency between two processes. And, if two processes are linearly related, the 

coherency function is 1. 

(Refer Slide Time: 08:04) 

 

If we consider now for purpose of discussion, two points on the ground surface and we 

want to model the ground accelerations at these two points as pair of random processes; 

there are two components. We have already seen how to model the individual 

components through their auto power spectral density functions. So, our basic objective 

would be to model the cross power spectral density function. That essentially boils down 

to modeling of the coherency function. So, we will focus on modeling the coherency 

function. The coherency function captures the spatial variability characteristics. 

Now, I am going to discuss a semi empirical model to start with, proposed by the 

Kiureghian. He considers four sources of phenomena that lead to spatial variability. And, 



according to him, the first effect is known as the incoherency effect. This is caused due 

to scattering in heterogeneous medium and differential superpositioning of waves 

arriving from an extended source. The next one is wave passage effect, which causes 

time delays and the attenuation effect and the site response effect. 

(Refer Slide Time: 09:22) 

 

Now, if you consider two stations k and l and the ground accelerations a k of t and a l of 

t; that is, a k of t is a ground acceleration at station k; a l of t is ground acceleration at 

station l. We will model these two random processes as having zero mean and stationary 

Gaussian random processes. The coherency function is given by ratio of the cross power 

spectral density function. Here I am using capital G to denote the power spectral density 

function; G a k a l of omega divided by square root of G a k a k of omega G a l a l 

omega. So, this is when the denominator is not equal to 0; it is 0 when denominator is 0. 

The amplitude of coherency function – this is again a complex function. So, I can define 

its amplitude and phase. The amplitude is modulus of gamma k l of omega. And, we 

introduced a phase, theta k l of omega, which is related to real and imaginary parts of 

coherency function through this relation. Our objective in modeling would be to arrive at 

models for coherency function. 



(Refer Slide Time: 10:33) 

 

Now we will digress slightly. This is something that we have already seen, but we 

quickly recall. Suppose I write a of t is a random process and I write it as i equal to 1 to 

n; A i cos of omega i t plus phi i. These A i’s are taken to be normal with 0 mean and 

variance sigma i square. And, A i and A j are independent for every i not equal to j. And, 

this phi i are taken to be i i d sequence of random variables distributed uniformly in 0 to 

2 pi. And, this phi i and A j are taken to be independent. So, under these assumptions, we 

can show that the expected value of a of t would be 0 and the covariance of a of t will be 

given by this function (Refer Slide Time: 11:16). So, this is a mean square periodic 

random process. And, its Fourier transform is given by this. It is a sequence of direct 

delta functions stationed at omega i’s. 

Now, this power spectral density function itself can be taken to be a discrete 

approximation to a continuous power spectral density, which is given here (Refer Slide 

Time: 11:36). Therefore, a of t can be taken to be an approximation. This representation 

can be taken to be an approximation for generating samples from this power spectral 

density. 
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Now, we will return to the discussion on ground accelerations. We will consider two 

stations: k and l. And, the ground acceleration: a k of t and a l of t. At a k of t, I will write 

the representation as i equal to 1 to N A i f k omega i r k cos omega i t plus phi i. And, at 

a l of t, this wave will now get modified due to the four effects that I mentioned. I am not 

going to get into the physics of those arguments, but I just would like to highlight the 

nature of the model. This amplitude now gets modified. It is no longer A i, but it is some 

P k l i A i plus q k l i B i. And, this function – I will explain what are these f k and f l; 

they are different. And, this cos omega i t – now, there is a time delay, t minus tau k l; k l 

refers to stations k and l. And, i subscripts indicates that these time delays are functions 

of frequencies. 

Now, this phase also (Refer Slide Time: 12:56) gets modified by an additional random 

term. So, now, A i, A B are random variables. A i is independent of B j for all i and j; A i 

is independent of A j for all i not equal to j; B i is uncorrelated with B j for i not equal to 

j. They have 0 mean; their variances are equal. And, phi i’s are i i d’s, and epsilon k l i 

are i i d’s; and, phi i is independent of epsilon, independent of a r and b. So, all these 

random variables are mutually independent. This tau k l, which is appearing here is 

arrival time delay for the i th component from station k to l. These p k l and q k l are 

deterministic constants, which need to satisfy this condition. And, they are represented in 

terms of sine and cosine functions having these angles beta k l comma i. This r m (Refer 

Slide Time: 13:52) – where does is it appear? That is r k and r l for m equal to k and l; 



they appear here. They are sourced to site distances; and, this f k that is sitting here is the 

attenuation law from source to the site. 

(Refer Slide Time: 14:24) 

 

Now, if this representation is taken to be acceptable, it is constructed based on various 

arguments; I have summarized it here, the salient features. If we accept this as a model, 

then we can show that the coherency function associated with this model is given by this 

expression. There are two components in the phase: one is due to phase-wave passage; 

other one is due to site response. This is the time delay (Refer Slide Time: 14:47) 

actually due to wave passage effect; and, this is due to the wave propagation in the local 

(( )) conditions. This d k l is the distance between sites k and l; d k l of l, which appears 

in the definition of wave passage effect here, is a projection of d k l along the direction of 

wave propagation. Nu a p p is apparent shear wave velocity. This H there, which are 

appearing here (Refer Slide Time: 15:13) are the transfer function from bed rock to the 

ground surface; it is like (( )) transfer functions. So, this is a model for coherency 

function. 



(Refer Slide Time: 11:53) 

 

This is based on… As I said, it is somewhat semi empirical different effects that we 

expect in modeling ground accelerations are explicitly identified. And, a model is 

constructed deliberately to allow for these effects (Refer Slide Time: 15:45). 

(Refer Slide Time: 14:24) 

 

The model parameters here like this (Refer Slide Time: 15:49) beta k l, etcetera are to be 

now calibrated against instrumented records and they need to be identified if you have to 

use this model. 



(Refer Slide Time: 16:00) 

 

There are actually in the existing literature models, which have been directly made from 

the observed random fields, that is, purely database models; now, some of the questions 

that are considered in analyzing these data are following. Are the random fields 

isotropic? That is, does the covariance between two stations depend upon the separation 

distance and not on the direction? That means any direction you take in the domain of 

interest; as long as you are taking two stations, which are at the same distance separated 

by same distance, their covariance will be the same. Then, the random field is taken to be 

isotropic. But, given the way the seismic waves propagate, there is a directionality effect 

and these fields may not be isotropic. 

Then, at any point within the domain, the excitations are having three translation 

components. So, at different points, you can identify principle axes for excitation in 

different points. But, given that the wave front is propagating roughly in the same 

direction for the entire region, one could assume that the principle axes for the three 

translation components at different points have the same principle axes; I mean they have 

the same principle axes. That is another assumption that we can make. 



(Refer Slide Time: 17:23) 

 

So, based on this, several authors have suggested models. And, I will just run through 

some of them. One of these models is one dimensional isotropic models, where the 

amplitude of coherency function is given as exponential minus a omega into x i; where x 

i is the distance between the sites. There are various forms of this exponent that are 

suggested. 

(Refer Slide Time: 17:48) 

 

And, for instance, a directionality… This is isotropic (Refer Slide Time: 17:54). And 

then, subsequently, there is a model where directionality effect is introduced by 



considering this angle theta, which is angle between direction of wave propagation and 

line joining the sites. Now, typical values for these model parameters like a 1, b 1, a 2, b 

2, etcetera when psi is measured in kilometers are shown here. This is just for 

illustration. And, these numbers are arrived based on from actual instrumentally recorded 

data. 

(Refer Slide Time: 18:24) 

 

This Harichandran and Vanmarcke model has this expression, A exponential and this 

exponent; plus 1 minus A exponential another exponent. Now, this nu of f has this 

functional form; B has this functional form. And, these are some of the constants that are 

obtained for one event from the Taiwan smart array data. 



(Refer Slide Time: 18:54) 

 

So, there are other models. For example, Hao and others models, where these are 

anisotropic random field models, where psi 1 and psi 2 are actually the projected distance 

of the station separation vector along the normal to the direction of wave propagation. 

So, there are various model parameters here. And, some typical numbers I have included 

for illustration. 

(Refer Slide Time: 19:24) 

 



So, this is yet another model for short distances. When separation distance is less than 

100 meters, there is another model. So, these are all empirical models, which are fitted to 

observe data. 

(Refer Slide Time: 19:36) 

 

Now, the point that we can conclude at this stage is based on data; or, based on 

combination of data and certain phenomenological arguments, we can construct the 

coherency models for the spatial variability characteristics of ground accelerations. So, 

once we reach that conclusion, the next question that we need to consider is how do we 

model the structural behavior under differential support motions especially when the 

support motions are modeled as vector of random processes. So, this is the view graph 

that we saw a while before. 



(Refer Slide Time: 20:18) 

 

And, the associated governing equations can be written; this we have seen earlier in our 

discussions. The superscript capital T indicates total displacement, absolute 

displacement. And, there are N nodes; the size of u T is N and u g is the ground degrees 

of freedom; that is, applied ground displacements, velocities and accelerations. So, the 

structural matrices are partitioned as per this partitioning of the nodal displacements. 

And, what are unknown here are this u T; u g double dot is given. And, P g of t is a 

reaction transferred to the supports. So, we have, the size of this u g is I think M cross N 

g cross 1. So, there is N plus N g number of equations with capital N number of 

unknowns, which are u t; and, N g number of unknowns, which are the reactions. So, we 

can write two sets of equation: one for the displacements and other for the reactions. So, 

that is what we should be able to do here. 

Now, in analyzing multiply supported structures under differential support motions, we 

have already seen that there is what is known as pseudo-dynamic response component. 

That means without the inertial and dissipation effects coming into play, there will be 

stresses in the structure due to the differential support motions and that is known as 

pseudo-dynamic response. And, that we obtained by considering the equation by 

omitting the inertial and dissipation effects; and, we get this equation (Refer Slide Time: 

21:58). We call this response as u p. And, we can solve for u p in terms of applied 

support displacements. And, we call this matrix minus K inverse K g as capital gamma 

and this is called influence matrix. Now, based on that, the reaction transferred due to 



pseudo-dynamic action can also be evaluated. If u g of t is a random process, we can 

evaluate properties of u p by using… This is a linear transformations on… Say for 

example, Gaussian random processes, we can characterize u p. 

(Refer Slide Time: 22:34) 

 

Now, what we do is, we write the total response to be the sum of pseudo-dynamic 

response plus the dynamic response. That would mean we will write the displacement 

vector u T u g as u p, u g plus u and 0. And, once we substitute into this governing 

equation and take into account the fact that u p satisfies certain equilibrium equations, we 

can show that the equation governing the dynamic component has this form, M u double 

dot plus C u dot plus K u is equal to an effective force t; where, this effective force is 

given by this expression (Refer Slide Time: 23:07). And, most often, we assume that the 

effect due to the inertial effect due to the ground acceleration far exceeds the effects due 

to the dissipation characteristics; and, this second set of terms is often ignored. 



(Refer Slide Time: 23:25) 

 

Now, under various conditions, either by… Actually if mass matrix is diagonal, M g 

would be 0. And, if C is proportional to stiffness matrix, we can show that the effective 

force is exactly given by this. But, in other situation also, we generally assume that the 

effect of inertial actions predominates and we ignore the terms that involved damping on 

the right-hand side. 

(Refer Slide Time: 23:59) 

 

Now, how do we perform random vibration analysis for this problem? Now, this is 

reasonably straightforward; we have discussed this already. We need the power spectral 



density function of the ground displacement and for this effective force. And, p of t is 

given in terms of u g double dot and u g dot. 

(Refer Slide Time: 24:32) 

 

And, we write the Fourier transform of this and the conjugate of this; multiply and take 

expectation, etcetera. That is, this as shown here. And, we get the power spectral density 

of the effective force as shown here. And, once we get that, the power spectral density 

function of the displacement vector can be determined in terms of the matrix of system 

transfer functions; where, H of omega is minus omega square M plus i omega C plus k 

inverse. That itself can also be expressed in terms of normal mode. So, all these we have 

seen in one of the earlier lectures. 



(Refer Slide Time: 25:05) 

 

Now, pseudo-dynamic response can be determined using this. And, the power spectral 

density of that can be found out in terms of the influence matrix. Here of course, we need 

the power spectral density of the displacement. 

(Refer Slide Time: 25:19) 

 

The total response is in terms of pseudo-dynamic component and dynamic component. 



(Refer Slide Time: 25:31) 

 

And, again the power spectral density function of the total response can also be derived 

by manipulating these expressions. And, we get this to be the power spectral density of 

the total response. The variance of the response can be found out now by integrating of 

frequency domain. This has a variance due to pseudo-dynamic component, variance due 

to dynamic component and contributions due to correlation between pseudo-dynamic 

and dynamic responses. So, these are the characteristic features associated with 

structures subjected to differential support motions. 

(Refer Slide Time: 25:58) 

 



So, at this stage, what we have done is we have outlined how random process models can 

be made for spatially varying ground motions and how we can formulate the equations of 

motion. If we assume that inputs are stationary, we can perform analysis in frequency 

domain and we can get the power spectral density function of the response quantities of 

interest. The response here consists of a pseudo-dynamic component, a dynamic 

component; and, sum of that is a total response. 

Now we will consider the question how to determine the response if the inputs are 

specified not in terms of power spectral density function, but in terms of response spectra 

and coherency functions? If that information is given to us, how to use that and get the 

highest responses as is implied in the use of response spectrum base methods? So, here 

we consider the equation of motion in a slightly different notation. So, we call by x the 

total displacement, u as a support displacement. The form of the equation is quiet similar 

to what I discussed just now. This form confirms to the one that is used by Der 

Kiureghian and A Neuenhofer in the paper in Earthquake Engineering and Structural 

Dynamics. 

So, these are the various sizes of these matrices. Again, we partition the nodal 

displacement vector into x and u and that induces a partition on the structural matrices of 

stiffness, mass, etcetera. And, here unknowns are x and this reaction F of t. We 

decompose a total response into pseudo-dynamic response and dynamic response. And, 

pseudo-dynamic response – we obtain by solving the static part of the equation involving 

only the stiffness terms and we get x to the power s as R into u; where, u is a support 

displacement. Then, we substitute that into the governing equation. This equation (Refer 

Slide Time: 27:59) into that and obtain the equation for the dynamic component. 



(Refer Slide Time: 28:15) 

 

So, this we approximate. We ignore the terms involving damping on the right-hand side. 

And, this is now in a form that we can apply the model decomposition method to analyze 

the problem. So, the response is represented as phi into y; where, phi is the matrix of 

eigenvectors. So, phi transpose M phi is taken to be diagonal and phi transpose K phi is 

this (Refer Slide Time: 28:42) – diagonal; and, phi transpose C phi is again diagonal. So, 

based on that, we get now an equation for the generalized coordinates – i th generalized 

coordinates, y i double dot plus 2 eta i omega i y i dot plus omega i square y i. On the 

right-hand side, we get contributions due to the M distinct support motions. So, each 

mode responds to each of the sub components of the support accelerations. And, beta k i 

is a participation factor for the i th mode corresponding to the k th element in the support 

displacement vector. So, we get… 

To simplify this discussion, what we do is we define a quantity known as s k i, which is 

defined here; where, it is response of a quantity associated with the i th mode to the k th 

component of support acceleration without that participation factor. So, if this is 

accepted, then y i of t can be written as k equal to 1 to m B k i s i of t. Now, if z of t is 

response quantity of interest, which I write it as q transpose into x of t. That is, q 

transpose into x s plus x d. This again as I said, it could be interest oriented drift or 

reaction and so on and so forth. 



I can write for z of t an expression that is shown here (Refer Slide Time: 30:19). There is 

a summation over support displacements. This is pseudo-dynamic response; this is a 

dynamic response. The pseudo-dynamic response has only static contributions from 

static behavior, but from m components of the support displacements. The dynamic 

component has contributions from n generalized coordinates and m support displacement 

components. So, there is a double summation. This is a generic form. We can relate this 

a k and b k i to the various quantities that we have introduced. That is a made explicit 

here. 

(Refer Slide Time: 31:00) 

 

Now, the power spectral density function of z of t can now be derived. And, here there 

will be terms involving (Refer Slide Time: 31:10) only pseudo-dynamic component, only 

dynamic component, and cross correlation between dynamic and pseudo-dynamic 

components. So, I have the first term, (Refer Slide Time: 31:21) which is a double 

summation corresponding to the pseudo-dynamic component; the third term is the 

contribution from dynamic component. Single summation becomes double summation, 

because power spectral density function is a second order property. And, a double 

summation becomes a quadruple summation. And, the cross correlation is a triple 

summation. 

This is reasonably straightforward. This (Refer Slide Time: 31:46) H of omega is a 

transfer function for the i th generalized coordinate. Now, area under this function is the 



variance. Now, this variance itself is written in terms of variance of the generalized 

coordinates and this quantity s k i of t that we have introduced. This H i of omega is as 

shown here. So, this is a straightforward random vibration analysis made explicit for 

individual components and for a generic response quantity. 

(Refer Slide Time: 32:13) 

 

Now, I can normalize the cross correlation or cross coherence terms with respect to 

standard deviations. I introduce non-dimensional quantities, rho u k u l, rho u k s l j, rho 

s k i s l j; where, s k i and s l j just to emphasize are response of these two single (( )) 

systems. So, these are non-dimensional. 



(Refer Slide Time: 32:39) 

 

Now, I talk about the coherency function. So, for purpose of discussion, we can take the 

coherency function to be given by this. To apply the method that we are going to discuss, 

we need to have a model for coherency function. From this, we can get the model for… 

(Refer Slide Time: 31:00) 

 

See if we look at the expressions that we are interested in computing, we need the cross 

power spectral density function between displacement components at k and l (Refer 

Slide Time: 33:13). The cross PSD between displacement component at k and 

acceleration at l. And of course, the cross PSD between acceleration at k and acceleration 



l; k and l are the stations or the components in excitations. This is (Refer Slide Time: 

33:36) coherency model for accelerations. So, from this, I have to derive the models for 

displacement and acceleration and displacements alone. And, this we use the standard 

definition (Refer Slide Time: 33:45) of power spectral density function; we divide by 

minus omega square and omega to the power of 4 to get the required functions as shown 

here (Refer Slide Time: 33:53). 

(Refer Slide Time: 33:57) 

 

And, the auto power spectral density function itself is taken to be the (( )) type of power 

spectral density function. It could be anything else that we are ready to use. 



(Refer Slide Time: 34:13) 

 

So, based on this, the quantities, these non-dimensional quantities can now be evaluated 

– this. So, everything that we need to evaluate these three quantities is now known. So, 

that completes our random evolution analysis. 

(Refer Slide Time: 34:26) 

 

Now, let us consider the question of response spectrum based method – how to analyze 

the response when inputs are specified in terms of individual response spectra and the 

coherency function? Now, we will quickly recall the response spectrum definitions and 

the limiting behavior. If you are considering the acceleration u k double dot of t and we 



consider the response of an oscillator with natural frequency eta and omega i, the 

response spectrum for relative displacement is given here, which we interpret a expected 

value of maximum of s k i of t over time t. This (Refer Slide Time: 35:24) response 

spectrum is omega k goes to 0. We have shown that this is u k max. And, the pseudo-

acceleration response spectrum as omega k becomes very large; we have shown that this 

is equivalent to u k double dot max. This is known as the peak ground acceleration or the 

ZPA, etcetera. These are the limiting behavior. This is a definition of response spectrum. 

Now, we introduce what are known as peak factors. For example, the maximum 

displacement is related to the standard deviation of the displacement through this factor 

(Refer Slide Time: 35:59) p u k, which is the peak factor for displacement. Similarly, the 

peak factor for response can be written in terms of standard deviation multiplied by the 

associated peak factor. So, if z of t is the response quantity of interest as has been the 

case, the peak factor associated with this is given by the standard deviation into peak 

factor p z. 

(Refer Slide Time: 36:23) 

 

Now, this is the expression sigma z square that we have obtained through standard 

random evolution analysis. Now, I am writing the variances u k u l. Now, I will write in 

terms of the peak factors. If I am interested in expected value of maximum of z of t, that 

will be p z square into sigma z square. And, that sigma z square – that means, on the 

right-hand side, I should multiply by sigma z square. And, for sigma u k, I will write it as 



u k max by p u k. Sigma s i j, for example, will be again expression in terms of its 

associated peak factor. So, in terms of peak factors, we get this expression. 
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Now, we have seen in the earlier discussion that the ratio of p z square by p u k p u l is 

approximately unity. This is an assumption anyway we are going to make, because peak 

factors are weakly dependent on frequency and their ratios are nearly unity. If we do that, 

then the expected value of the maximum z of t is obtained in terms of u k max and the 

response spectrum ordinates. And, u k max is in fact obtained as limiting value of these 

response spectra, omega j goes to 0. So, these are related. So, on the right-hand side, I 

have now all the quantities that I know off; and, this in fact is the desired combination 

rule. 

This involves the determination of these quantities, (Refer Slide Time: 38:14) rhos. And, 

from the response spectra, we have to find out the limiting behavior as omega goes to 0 

and obtain these displacement values. So, to be able to use this combination rule, it is not 

enough if only the response spectrum is given for individual components. There should 

be an acceptable limiting value for this response spectrum as omega goes to 0; care 

should be taken to ensure, that is a meaningful limit. And also, these quantities, rho – rho 

u k u l, rho u k s i j and rho s k i and s l j has to be evaluated. That would require the 

definition of coherency function. Once all these are in place, we can evaluate this 

function. 
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So, in summary, we can say that the implementation of this rule requires the knowledge 

of the PSD compatible response spectrum and knowledge of coherency function. 

Generalization to include multi-component nature of excitation and separation of 

response into pseudo-dynamic and dynamic components could be achieved although this 

has not been discussed. And, the idea of existence of principle axes for excitation could 

be assumed and these axes could be assumed to be the same for all recording stations. 

So, under these assumptions, we can now develop further combination rule, where there 

are multiple components and spatial variability together. So, that has not been done, but 

that can be done as a straightforward extension if you assume that the principle axes are 

the same at all stations. 
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Now, given the lack of adequate knowledge on cross PSD functions of earthquake 

ground accelerations, it makes sense to ask the questions – what are the optimal values of 

these cross PSD functions for which the response reaches their highest values? So, this 

question has been discussed in this paper by Sarkar and Manohar. And, I will just briefly 

outline the problem and the solution. 
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So, for purpose of discussion, we will consider a doubly supported single degree freedom 

system, which is subjected to differential support motion: x of t and y of t; and, z t of t is 



the total displacement. The total response here is pseudo-dynamic response plus dynamic 

response. 
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So, we can write the equation of motion quite straightforward. And, the pseudo-dynamic 

response can be evaluated by considering only the terms involving stiffness and we get 

this as a pseudo-dynamic response. And, the dynamic response can be obtained as the 

difference between the total response and the pseudo-dynamic response and we get this 

as this expression for the problem on hand. And, the governing equations consequently is 

obtained in this form. 
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Now, the input – we have two inputs: x double dot of t and y double dot of t. We assume 

that zero mean, stationary, Gaussian random processes with power spectral density 

function given by this 2 by 2 matrix. This cross term, that is, the cross power spectral 

density function we write as modulus and a phase function. And, e raise to i phi x y can 

be written as cos phi x y minus i sine phi x y. 
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The response quantity of interest for purpose of discussion, we take it to be force in the 

left spring and that is given by k by 2 into z t of t minus x of t. And, that turns out to be 



this quantity – k by 4 into 2 z minus x minus y. And, we define a quantity g of t, which is 

4 F by k, which is 2 z minus x minus y. It is something like a displacement quantity of 

interest. Now, let us focus on analyzing this quantity g of t. So, to start with, we can ask 

– what is PSD of g of t and what is its variance? 
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This is reasonably straightforward. We get by using the definition of the power spectral 

density function and the input-output relations. We get the power spectral density of S gg 

of omega to be in this form. And, the form that is written here is to be noted carefully. 

There is one transfer function, which multiplies auto PSD at x, that is, auto power 

spectral density of x double dot of t. Another one that multiplies y double dot of t. And, 

there is a third transfer function, which multiplies the amplitude of the cross PSD 

functions. So, the terms are arranged in this form. 
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And, it can be shown that this H 1, H 2 in terms of system natural frequency and 

damping and parameter omega can be written in this form. 
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And, this is H 3 of omega, is in this form, where H 3 of omega is also a function of the 

phase spectrum. So, the variance of the quantity of g of t can be written as area under the 

power spectral density function. That has again three components. These three 

components are different from the three components that we discussed earlier. Earlier 

what we did was we had a component due to pseudo-static response, a component due to 



dynamic response and a component due to correlation between pseudo-static and 

dynamic response. But, the way we are writing here is slightly different. We are writing 

here as contribution to variance due to x double dot of t, contribution to the variance due 

to y double dot of t and contribution to variance due to correlation between x double dot 

and y double dot of t. It is in this form it is done. Therefore, H 1, H 2, H 3 have a 

different meaning here. 
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Now, if we rearrange the terms, we can write H 1, H 2 in this form. And, if you carefully 

observe this, we can show that H 1 and H 2 are positive. That should be expected given 

the definition of the quantities. 
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And, H 3 of omega can take both negative or positive values. H 3 of omega is written 

here (Refer Slide Time: 44:14). This does not lead to any further simplification. So, 

given the presence of trigonometric terms, sine, cosine, etcetera, there is no guarantee 

that this is strictly positive or negative. It depends on phi x y of omega whether it is 

positive or negative. 
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So, the question now is we have the variance of the response consisting of three terms; 

the contribution from the first two terms are positive; the contribution from this term can 



be either positive or negative for a given omega. Now, if S xx and S yy are given – that 

is a basic assumption we are making; we are assuming that S xy of omega is not 

available. The knowledge on cross power spectral density function is not available. So, 

we are trying to find out that cross power spectral density function, which maximizes 

sigma g square. In absence of any knowledge on spatial variability, what is the worst that 

might happen is a question. So, what is optimal S xy of omega, which produces the 

highest variance sigma g square? 
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Now, suppose if we assume that the phase spectrum is given. Suppose the distance 

between two stations is known and the phase is essentially due to time delay; then, we 

can assume that the phase spectrum is available. In that case, if we look at the expression 

for the variance, which again is repeated here, we need to notice that the amplitude of 

cross power spectral density function is bounded between 0 and this quantity, (Refer 

Slide Time: 45:43) because amplitude of coherency is bounded between minus 0 to 1. 

Now, for any given value of omega, the contribution to sigma g square from this term – 

this is (Refer Slide Time: 46:00) unknown; S xy of omega is unknown. So, what we will 

do is, we look at the value of H 3. If H 3 is negative, we will put S xy of omega to be 0; 

that is, this limit. On the other hand, if H 3 of omega is positive, S xy omega will assign 

it to be its maximum possible value. So, this we have to do for every omega. If we do 

that, then that corresponding S xy of omega would produce the highest response. If you 



want the least response, the most favorable excitation, we have to revise the argument. If 

H 3 is positive, we will put S xy of omega to be 0; and, if it is negative, we will put it to 

the highest value, so that the maximum value is deducted from these positive 

contributions. So, this is a definition of critical – say cross power spectral density 

function when the phase spectrum is available. 
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What is to be noted here that the least favorable and the most favorable responses are 

produced neither by fully coherent motions nor by fully incoherent motions. Instead 

special form of cross power spectral density function, which depends on the system 

characteristic exist, which produce these optimal responses. I mean this is of some 

interest especially when we are talking about highest response as is implied in the 

philosophy of response spectrum based methods. So, the notion of this optimal cross 

PSD function needs to be interpreted in that context. 
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Now, the second case is when the cross power spectral density – nothing about it is 

known. So, both amplitude and phase are unknowns. Then, we can write again. We 

return to this expression and look at H 3 of omega and we recast H 3 of omega in this 

form. We collect terms containing sine and cosine terms separately and define an 

amplitude and phase function associated with those terms; I can write H 3 of omega in 

this form. 

(Refer Slide Time: 48:11) 

 



So, the details of these g 1, g 2 functions are shown here. You have to simply collect the 

terms, which (Refer Slide Time: 48:21) multiply cos and sine separately and define g 1 

and g 2. So, these are defined here. So, R of omega is square root g 1 square plus g 2 

square; alpha is tan inverse g 1 by g 2. 
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So, equipped with this, now, we have the expression for the variance, where H 3 of 

omega is now written in this form. Now, S xy of omega takes values between 0 and this 

quantity and cosine function takes values between minus 1 and plus 1. So, what we can 

do, what we are interested is in finding sigma g square, which is maximum. So, what we 

will do is we will set the amplitude of S xy to its highest value if cosine of this function 

is positive. And, that depends on relative value of phi xy and alpha. And, we will set it as 

H 3 of omega. S xy – we will put it as 0 if cosine of this function is minus 1. That would 

happen when phi xy of omega minus alpha of omega is pi. So, this will produce the 

favorable response; this will produce the least favorable response. 
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So, this to be minimum, as I was telling, you have to set it to pi and we get this. Again, 

we notice that here the responses produced by fully coherent motions, but the phase 

spectrum depends upon frequency in a specific manner. 

(Refer Slide Time: 50:03) 

 

Now, before we leave this topic of spatial variability, I would like to just briefly 

highlight problems of spatial variation of support motions in secondary systems of 

industrial structures. So, for example, I was telling piping networks. For sake of 

discussion, let us consider a building in which there is a piping. This is a piping structure, 



which is supported at two points on a primary system. So, this blue structure is the 

building. And, this structure suffers the support displacement x g of t. Due to this, the 

floors suffered the displacement, u of t and v of t. If the mass of this piping structure is 

relatively small with respect to the mass of this structure and under other certain 

considerations, we can assume that there is a kind of uncoupling that is possible, where I 

will consider the piping structures separately and analyze its response for these floor 

displacements. So, again, the point that that is being made is that this structure now is 

multiply supported and subjected to differential support motions. 

Now, the definitions of these support displacements have to be arrived at carefully. For 

that, we may have to consider the possible dynamic interaction between the secondary 

system and the primary system. It is not that while finding u of t, v of t, we entirely 

ignore the presence of this secondary system. So, there lies certain complicating features. 
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So, the characteristic features that we need to take into account are – first one what is 

known as tuning. Here the natural frequencies of P and S systems in their uncoupled 

systems come close to each other and there is a significant dynamic interaction. That 

leads to feedback effect between the motions of the two systems. It can be present under 

resonant or even when tuning is not perfectly present; still there can be a feedback. Now, 

the primary system in this particular example (Refer Slide Time: 52:29) could be a civil 

structure made up of say concrete; it could be a reinforced concrete structure. The piping 



is the metal structure. The energy dissipation characteristics between these two systems 

are quite different from each other. And, the assumption of classical damping model for 

these types of structures may not be admissible; and, one may have to deal with known 

classically damped systems in arriving at motions, u of t and v of t. 

Finally, there is a (Refer Slide Time: 53:01) spatial coupling – the secondary system 

being multiply supported and subjected to differential support motions. So, that means 

this piping system (Refer Slide Time: 53:10) responds to the floor displacement at this 

level as well as at this level. That induces certain spatial coupling in the system. Now, 

this problem is quite different from the study of spatially extended structures in a land-

based structures like bridges and large dams, where the support motions are essentially 

characterized by the phenomena associated with wave passage in the earth medium; 

whereas, here the support motions that reach the supporting points of the secondary 

system – these excitations propagate through a manmade structure and they can be quite 

complex. It depends on the natural frequencies and more shapes of the structure and it 

can be quite diverse. So, the model combination rules that we derived based on 

arguments for land-based structures need to be carefully looked into before we can apply 

for this class of problems. 

I would not go into details of this; I leave it as a thought. There is vast literature available 

on this. I thought it is useful to mention this, because we are talking about multiply 

supported structures. So, at this point, we will conclude this lecture and we will consider 

further applications of random vibration analysis in the remaining lectures. 


