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Will begin today’s lecture by, quickly recalling what we were doing in the previous 

lecture. We defined, what is the random variable? Random variable is a function from 

sample space to the real line and we clarified the meaning of the set of all omega, where 

x of omega is less than or equal to x, as a sub set of the sample space on which we 

assigned probabilities. We describe random variable through functions; three functions -

probability distribution function, probability density function, and probability mass 

function. A typical probability distribution function is shown here, this is a probability 

distribution function for a mixed random variable; a random variable can be discrete. 

Where the probability distribution proceeds through only jumps and in continuous 

random variable, it proceeds without any jumps and in mixed random variable, there can 

be structures, where it proceeds without any jumps and as well we can have jumps as 

shown here.  
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We defined probability density function, as the derivative of this distribution function. 

Probability mass function is defined for discrete random variables, we considered several 

random variables, Bernoulli random variable is the basic building block. Here, we 

basically, deal with random variables, which take only 2 states, this is 0 is called success 

and 1 is called failure, and we assign probability P and 1 minus p. So, a sample space 

here is discrete in a binomial random variable, we deal with n repeated Bernoulli trials 

and ask, what probability of K successes in n trials is and we have shown, this to be a 

function of this kind, were take K takes values from 0, 1, 2, up to N.  
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So, here again, the sample space is finite, discrete and number of successes to first 

failure. We called the geometric random variable number of trials to the first success that 

is defined, suppose K x is the number of trails for first success, if we get first success on 

the K trial, we have got failures on the first K minus 1 trial and success on the K trial 

here K runs from 1, 2 and it can go all the way up to infinity. So, here the sample space 

is countably infinite. 

We also talked about models, for rare event that is where we were at the end of the last 

lecture here, we are looking for occurrence of isolated phenomena in time or space 

continuum, we cannot put an upper bound on the number of this isolated phenomena, but 

actual number of such occurrences is relatively small. Some of the examples are for 

example, number of goals scored in a football match, where we are looking at isolated 

phenomena in time continuum or we look for defect in a yarn in 1-dimensional space. 

This is 1-d space continuum or a typo graphical errors in a manuscript it is 2-d 

continuum or defects in a solid it is 3-d continuum or stress at a point exceeding, elastic 

limit during the life time of the structure. 

(Refer Slide Time: 04:45) 

 

So, here we are looking for isolated phenomena in time continuum. In this class of 

problems the underlying random variables namely, the number of isolated phenomena is 

given by this particular function, here a is a parameter and K takes values of from 0, 1, 2 

up to infinity. 



So, the sample space here is countably infinite a is the parameter of the probability 

distribution function. We can verify that probability of X less than or equal to infinity, 

we should be the probability of sample space is indeed equal to 1.This is a how the 

probability distribution function for a Poisson random variable with parameter a equal to 

5 looks like and this is the associated probability density function in they expressed in 

terms of set of Dirac’s delta function. 

So, this is the discrete random variable with countably infinite sample space and it is 

going to be very useful in variety of context and will come across this random variable 

quite often in latter discussions. 
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Now, we can obtain the Poisson probability distribution function, as a limit of the 

binomial probability distribution function, here for a binomial probability distribution 

function that is the for a binomial random variable with parameters n and p probability of 

k successes in n trails is given by this. Now, what we will do is we will make the number 

of trails to become very large and probability of success in any given trial going to 0, 

such that the product n p goes to a constant and we will look at realizations of x for small 

values of k. 

So, we are essentially, simulating the prescriptions for rare event namely, the probability 

of success is small, there is actually no bound on number of successes, but in practice 

that what we are looking for is number of success to be quite small related to n, in such a 

case the binomial distribution can be shown to become Poisson distribution. A simple 

proof for this can be constructed by manipulating the binomial distribution and imposing 

the limit that we are putting that is n goes to infinite p goes to 0, such that n p goes to a 

constant, if we do that indeed 1 can prove that the binomial distribution goes to a Poisson 

distribution.  
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We will consider some numerical example, so that we understand what exactly is meant 

here. Let us consider, a binomial distribution, where we are conducting 1000 trails and 

probability of success in any single trial is 10 to the power of minus 3. So, if you 

faithfully follow the binomial model a N is 1000 p is 10 to the power of minus 3 and, if I 

am seeking the probability of no successes in 1000 trails, this is a rare event by the way, 

this will be 1000 C 0 10 to the power of minus 0 and this 1 minus p to the power of 1000 

the number is 0.36769. Now, this particular choice of parameters in N and p are suitable 

for application of Poisson limit simply, because n is sufficiently large p is sufficiently 

small and n p, which is parameter a is 1 here. And k that I am looking for a 0 that is 

indeed quite small compared with 1000. So, this is situation, where 1 could think of 

applying Poisson model for the binomial distribution and according to Poisson model, 

probability of x equal to 0, is exponential minus a. a to the power of 0 by 0 factorial and 

this turns out to be 0.36787, which compares reasonably with the number that we get 

from the binomial distribution.  



(Refer Slide Time: 08:30) 

 

Will consider another example, will consider a binomial random variable, with N equal 

to 3000 and probability of success is 10 to the power of minus 3. Now, the question I am 

asking is what is the probability of number of successes or greater than 5, here 

probability of X greater than 5 is nothing but 1 minus probability of X less than or equal 

to 5; so, you have to sum the probabilities of this is 1 minus k equal to 0 to 5, this I am 

summing from 0 to 5. So, this can be in principle can be evaluated, but you will see that 

you will have few numerical difficult is in doing this, but we can now explore if 

Poisson’s limit is appropriate for this situation. So, number of trials is 3000 and 

probability of success is 10 to the power of minus 3. So, n appears sufficiently large P is 

sufficiently small. So, the limit n p the product n p is 3 and the range of k that I am 

interested in is k less than or equal to 5, which is quite small compared with 3000. So, 

the application of Poisson’s limit (( )) c appears reasonable. 
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So, if we evaluate this probability, we get a number 0.084 and you can compare this 

number by evaluating, actually this expression. Now, I will consider another random 

variable, the Gaussian random variable also known as the normal random variable. We 

will see shortly that it helps us to model situations where, uncertainty emerge out of a 

summation mechanism where, different sources of uncertainties contribute to the final 

uncertainty in a parameter of interest and they all add up, I will make this statements 

more precise, as we go along but right now, we can look at the probability density 

function of a Gaussian random variable. So, here there is an exponential function and a 

square of the state variable is here. There are 2 parameters 1 is appearing, here that is m 

and other is sigma, which also appears here, x takes value from minus infinity to plus 

infinity. 

So, here, the sample space is the real line and there are 2 parameters m and sigma. So, m 

and sigma are the parameters and m itself can take values from minus infinity to plus 

infinity, whereas this parameter sigma has to be non-negative. 
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A Gaussian random variable is denoted by n m, sigma; n is for this word normal and this 

is m, sigma. A typical plot of a normal probability density function for m equal to 2 and 

sigma equal to 0.8 is shown here. This is a familiar bell like curve it which is symmetric 

about this line. This line is nothing but m equal to 2, you can see that this function is 

symmetric about m, that is, what it is shows and as x tends to infinity plus minus infinity 

the function decays to 0 and area under this curve is going to be 1. Will see, how to 

prove that shortly More on this, as we go along write now, we will try to see get 

familiarize with this probability density function is specific form of a normal random 

variable is when the parameter m is 0. And this parameter sigma is 1. This is, This is the 

n 0, 1 normal random variable and the probability density function is here and it is 

symmetric about this line, it is symmetric about this line and the probability distribution 

function is a continuous curve you starts from 0 and goes to 1.  
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The Gaussian random variable can also be obtained, as a limit of binomial random 

variable. Here, the limit that we consider is again, we take n to be large that is number of 

trails in the binomial random variable to be large and q is 1 minus p and we demand that 

the product n p q should be greater than or equal to far greater than 1 and k itself takes 

values in the neighborhood of n p; n p plus square root n p q and n p minus square root n 

p q. And if these conditions are satisfied, we can show that the binomial distribution can 

be approximated by this Gaussian curve. 

So, you recall now is started with a Bernoulli trial and constructed a binomial random 

variable, and I am using binomial random variable to construct Poisson and Gaussian 

random variables in that sense, a Bernoulli random variable is the building block for 

constructing various probability distribution functions. 
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Let’s consider an example, where a n is 1000 p is point 5 and k is 1000 500 n p q is q is 

also 0.5, because it is 1; 1 minus p n p q tends have to be 250 and square root of that is 

around 15. Now, n p minus square root n p q is 485 and n p plus square root n p q is 

around 515. So, according to the Gaussian limits for binomial distribution, if k lies mind 

you, our, we are interested in k of 500, we are interested knowing what is x equal to 500. 

So, k is between 485 to 515 so, wherein a situation where the binomial distribution can 

be approximated by a Gaussian curve and we are getting this number 0.1030 this can be 

compared by actually, evaluating this. 



Now, from the Poisson model, we derive what is known as an exponential random 

variable, how we will construct that? We will show that an exponential model helps us to 

model the waiting times between numbers of occurrence of isolated phenomena in 

Poisson model. So, let us consider a time interval 0 to t, time interval 0 to t and consider 

a subinterval t 1 to t 2 within this interval, suppose if I place randomly n points in 0 to t. 

Now, we define the success, if that point lands in this interval, we say that it is success 

that is point lies in sub interval t 1 to t 2. So, probability of success is t 2 minus capital t, 

which is p, because where placing the point randomly 0 to t. So, it can land anywhere 

with the same, probability of failure, where success is the point lies in t 1 to t 2. The 

probability of failure is point lies outside t 1 and t 2 t is 1 minus p. Now, if we place n 

number of points and we now ask the question what is the probability distribution 

function of number of points in t 1 to t 2 after we have finish placing n points in 0 to t. 

So, this is follows binomial distribution and probability of x is equal to k is given by n c 

k p k 1 minus p to the power of n minus k. 

Now, we will consider the Poisson limit of this binomial distribution, we will allow the 

number of points to become large and we will allow the time interval t 2 to t 1 to become 

small. In such a way, that their product goes to a constant a n t 2 minus t 1 by capital t 

goes to a that mean, the n p goes to a in such a case, we know that the binomial 

distribution goes to the Poisson model. Now, we denote by n by t, we denote as lambda 

and t 2 minus t 1 as a, with that notation, a becomes lambda t a. Therefore, probability of 

x equal to k is given by the Poisson model exponential minus lambda t a lambda t a to 

the power of k k divided by k factorial, were k run from 0 to 1 to infinite. So, this the 

Poisson model for random points occurring in time continuum 0 to capital T. 
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Now, we define another random variable, T star which is a time for the first arrival, you 

start from 0, what is the probability that T star is greater than some time t. If the first 

point is going to arrive after T star there will be no points in 0 to t. Therefore, probability 

of no points in 0 to t is given by exponential minus lambda t, where k is 0 in the Poisson 

model. Now, therefore the probability distribution function of T star is given by 1 minus 

this, which is 1 minus exponential minus lambda t. And the associated density function is 

a exponential function shown here. 

So, here I have shown in this plot, the probability density function for some value of 

lambda, it is the exponentially decaying function area under this curve is 1 and the 

associated probability distribution function is this monotone non decreasing function 

which starts with from 0 and goes to 1, as this state variable goes to infinity. 

This T star can be used to model life time of a structure. So, in that definition of Poisson 

event, if we define the event to be, for a example, extra set a point in the structure 

exceeding elastic limit and that if we all agree that it is the definition of failure, then the 

time that we need to wait till that happens in as way is a life time of the structure. 

So, life time of the structure can be modeled as exponential random variables, if the 

occurrence of the failure events follow Poisson distribution, we came across a similar 

random variable, when we talked about discrete random variable, namely the geometric 

random variable. Geometric random variable was the number of trails for the first 



success; So, the exponential random variable can be thought of as a generalization of the 

geometric random variable for the continuous case. This exponential distribution has a 

interesting property that can be clarified here, by considering the probability of T star 

less than or equal to t condition on the fact that up to t naught there was no event. So, 

that is by definition of conditional probability it is T star less than or equal to t 

intersection T star greater than or equal to t naught and divided by probability of t greater 

than t naught. 

Now, if you use the exponential model for this and follow through the arguments here, 

you can show that the probability distribution of T star given that there was no event, till 

t naught is given by this exponential distribution. Here t runs from t naught to infinity 

that means, it is continuous to be an exponential distribution except that it has now 

shifted to t naught. 
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In words, if you want to express, what this actually is telling us, what it means is failure 

to observe an event up to time t naught, does not alter once prediction of the length of the 

time from t naught before an event will occur, the future is not influenced by the past that 

is the message, so this is also known as memory less property. 

Now, we come to a new topic, namely transformation of random variables to clarify, 

what exactly is the problem here, we can consider a simple example of a cantilever beam 

caring a tip load P, the cross section of the beam is rectangular, where d is the depth and 



b is the breath, l is the length, e is the young’s modulus, I is the moment of inertia, area 

moment of inertia. Now, we knew that the tip deflection here is given by PL cube by 

3EI. Now, if P L b d e are all random variables, then it automatically follows that delta is 

also a random variable. So, we will typically be interested in knowing, if P and E are 

random variables and if we know their probability distribution functions, what can we 

say about probability distribution of delta. This is the problem that we have to answer in 

structural engineering. 
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The inputs to a system, if this is answer done, the output will also be answer. So, this 

input variable pass through our system through the physical loss and governs a system 

and produce uncertainty in the output. So, given the probability distribution of these 

uncertainties in the input and the definition of this system, the output is the random 

variable and what is the probability distribution of that output is the question. 

So, this is essentially a problem in transformation of random variables. So, let us make it 

more specific, let X be a random variable, we will define, we will define a function y is 

equal to g X; here, the question is given the probability density function of X, what is the 

probability distribution function of y, then of course the function g of X is also specified 

to make the meaning of this problem clear, what we do is we plot g of X versus x here 

this is x this is g of X and this function is my g of X and I will plot they the given 

probability density function of x below this say, let this be the probability density 



function and this is the unknown probability density function of y which we need to 

determine. 

Now, I consider the question, what is the probability that y lies between y n y plus d y 

this is the question that I am asking that is given by p y of y into d y p y of y is still 

unknown. So, if y lies between y and y plus d y where all x can lie. So, to see that we 

draw these lines here so it intersects g of X at 3 places this line from y it takes intersects 

here intersects here intersects here. So, if y lies between y to y plus d y x can lie here x 1 

minus d x 1 to x 1 x 2 to x 2 plus d x 1 or x 3 minus d x 3 to x 3 

So, whenever x lies in the shaded regions, y will lie in this shaded region and these three 

events are mutually exclusive. So, this probability p y of y d y is nothing but the sum of 

this probability. This the probability density function. Therefore, the probability that x 

lies in this shaded region is given by probability density function evaluated at x 1 into d x 

1 right. So, that is the first step and p x of x 2 into d x 2 plus p x of x 3 into d x 3, 

therefore,. p y of y is now given by p x of x 1 divided by d y by d x at x is equal to x 1 

and p x of x 2 divided by d y by d x at x is equal to x 2 and for similarly for a third point 
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In general, if there are n possible routes like this the probability density function of y is 

given by the summation over all these routes, where x i’s are the routes of the equation g 

of y x equal to y. Now, you have noticed that we are putting modulus, here it is just to 

ensure that we add the probabilities needs to be positive number. So, we are we wish to 



ensure that where adding probabilities, there is no signs associated with probabilities to 

make that to ensure that we are putting this modulus. 

So, we can consider in a few couple of examples, and see what we land from there the 

first example, we consider is we assume that X is a normal random variable with 

parameter m and sigma and the function y is defined as exponential of x. Now, x is 

normal; therefore, the state variable here takes values from minus infinity to plus infinity, 

the since X lies between minus infinity to plus infinity based on this rule, we can certain 

that y lies between 0 to infinity. So, y is to positive y is nonnegative it lies from 0 to 

infinity. 
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Now, we come here, I am plotting y of x versus x here, in this graph. This is my 

exponential function, so, at x is equal to 0 it is 1 and as x tends to infinity, it goes to 

infinity and x goes to minus infinity, it goes to 0 now this is my probability density 

function of normal random variable, this is the mean and parameter is or sigma is also 

reflected in this diagram, we are interested in knowing the probability that y lies between 

this shaded region y to y plus dy if y lies between y to y plus dy x will lie in this shaded 

region. 



Therefore, probability of y density function of y at y is given by p x of x divided by the 

dy by dx there is exponential x, which is same as y. So, we substitute into the formula 

here and we get the following this expression for the probability density function of y the 

state variable y is appearing here, as well as here this random variable y is known as 

lognormal random variable the name here originates, because if you look at x which is 

normal is actually log y. so, logarithm of y is normally distributed so, we call it as 

lognormal random variable. 

This is a typical plot of a lognormal random variable, this is the probability density 

function, although there is at y equal to 0 the y is sitting. Here, in the denominator but 

log y is in the exponent and if you apply the l Hopital’s rules, you can show that as y 

goes to 0 the probability density function goes to 0. So, we start with 0 and it peaks and 

this is the probability density function they associated probability distribution function is 

here it is a 0 at x equal to 0 and as x tends to infinity becomes 1. So, this x here is the 

lognormal random variable, a typical plot of that.  
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We will consider another transformation Y equal to a X square, so, first step is we have 

to invert this relation and find out the routes of this equation. So, x is plus minus square 

root y by a and what is d y by d x it is 2 a x. So, here we are plotting the function y equal 

to a x square here and the given probability density function of x is shown here and this 

is the unknown probability density function of y and if x takes values from minus infinity 



to plus infinity y will take value from 0 to infinity. So, the probability that y lies between 

y to y plus dy is nothing but the union probability of the union of these 2 events namely x 

lies between x 1 to this x 1 minus dx 1 and x 2 to x 2 plus d x 2. So, you have to add 

these 2 probabilities, if you follow those rules and if we add them up I get the probability 

density function of y in terms of probability density function of x, which is given and this 

is the requisite probability density function. 
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Now, we consider another example, let X be a normal random variable with parameters 

m and sigma and I define a new random variable u, which is X minus m by sigma. Now, 

we have to invert this relation x will be sigma u plus m that is the route and what is du by 

dx it is 1 by sigma. So, the probability density function of u is given by probability 

density function of x evaluated at the root divided by the modulus of the slope and if we 

do that we get this function, which is actually another normal random variable, whose 

parameter is 0 and 1, m is 0 sigma is 1. 

So, we have what we have done is, we have carried out a linear transformation on a 

Gaussian random variable and we see that the Gaussian property of the random variable 

is preserved. U is you can show that U is non-dimensional right now, it may not be clear 

but as we go along will be able to show that U is non-dimensional and 1 more remark 

that can be made is that the fact that upon a linear transformation a Gaussian random 



variable remains Gaussian, in this particular example, this is an illustration of a general 

result that Gaussian quantities are closed under Gaussian operations.  
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Later, in this course, we will see this, this operation, what I mean here can be a 

differential operation or a matrix operation or another words, if input to a mechanical 

system or Gaussian and the mechanical system is linear the output will also be Gaussian. 

As an exercise, we could consider another problem, where x is again normal with 

parameter m and sigma and we define a linear transformation on x a x plus b - where a 

and b are deterministic numbers and we can show that y is again normal with mean a m 

plus b with parameter a m plus b and the second parameter a into sigma. This again is an 

illustration of the fact that a linear transformation of a Gaussian random variable keeps 

the random variable Gaussian. 

Now, we will ask this question, now, let us consider a random variable x, we will ask the 

question, what constitutes the complete description of this random variable; we have 

answered this question, for complete description of x we need to specified its probability 

distribution function or its probability density function. 
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Now, as engineers, we are always interested in simplifying descriptions. So, we can ask 

the questions is probability density function always required, an associated question is 

probability density function always available. This leads to the question or simpler 

descriptions possible for a random variable that takes us to the next topic namely 

moments of a random variable and that introduces us to what is known as expectation 

operator. 

So, let us start with, what is meant by, mean of a random variable, lets x be a random 

variable; let it be continuous and p x of x be the probability density function by 

definition the mean of x is given by this integral x into p x of x dx, if x is a discrete 

random variable; where this probability of X equal to x i is specified for i equal to 1 to n 

but definition the mean of this random variable x is given by the summation i equal to 1 

to n x i p of x equal to x i. 



(Refer Slide Time: 37:30) 

 

The word mean is we are familiar with, what it means, the question that we can ask is 

this definition of mean of a random variable consistent, with what we know as mean or 

the average we claim that eta is a measure of central value of x. 

If I am asked to specify a single number, which is most representative of capital x I 

would be tempted to offer eta is a candidate the question as our saying is this notion 

consistent with our intuitive notion of a mean by that what i means suppose if you have 

numbers x i i equal to 1 to x n to x 1 x 2 x 3 x n and I ask the question what is the 

average of x or mean of x our intuition would say that you have to add all these numbers 

and divide it by the number of observation that is the mean of x we call it as x bar.  

Now, this can be rewritten as i equal to 1 to r n i x i, where n i is number of observations 

which are identical to x i that means for example, if you are evaluating a class out of 10 

marks and you are giving marks 0, 1, 2, 3 up to 10 and if there are 100 students some 

may be 5 students may get 8 marks, 11 students may get 7 marks, so and so forth. So, 

this n i is the number of x i 7 minutes n i number of students, we are got 7 marks right so 

the average is again given by this. 

Now, what is n i by n, which is nothing but probability of x equal to x i by 1 of our 

definition of probability. So, this summation thus can be given as x i into probability of x 

equal to x i this is perfectly consistent with the definition of mean of a random variable 

for discrete random variable, which we just now solved if these number of distinct 



observations become very large this summation can be replaced by an integral and this 

again is consistent with the definition of mean of a random variable, this is eta. 
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So, then the definition of mean as a moment of a probability density function is 

consistent with, what we think as the so called arithmetic mean. After considering as 

measure of central value, the next natural question to ask is to define a measure of 

dispersion, this leads us to the notion of variance and standard deviation; again if x is a 

continuous random variable with probability density function p x of x by definition the 

variance is defined as integral minus infinity to plus infinity x minus eta, where eta is 

now, the mean which we already defined square of that p x of x dx for a continuous 

random variable and an associated definition for a discrete random variable, where this 

integral is replace by a summation, the positive square root of this variance is known as 

the standard deviation of capital x, we do not assign any meaning to the negative root 

this is by convention.  
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Now, variance of x has the units of square of x that can be verified, whereas standard 

deviation has units of x; therefore, it is preferred over variance. What we have done here 

is to find out how does x deviates from its central value and squared it and summed it 

over minus infinity to plus infinity. We may be tempted to offer an alternate definition 

for measure of dispersion, where instead of square squaring and then taking a square 

root, I can as well consider here the modulus of x minus eta and p x of x d x integral 

minus infinity to plus infinity as a measure of dispersion this is perfectly valued as a 

definition, but this is not commonly used because this operation of taking absolute value 



is not amenable for algebraic manipulations. Say, a plus b whole square can be expanded 

as a square plus b square plus 2 a b, whereas the modulus of a plus b state as modulus of 

a plus b. So, this is 1 reason, why this is not preferred, although this also and looks 

perfectly acceptable, as a definition. The generalization of the notion of mean and 

variance can be of can be seen by defining what is known as expectation operator. 

We consider x to be a random variable with given probability density function p x of x 

and consider the function g of X, we say this quantity as expected value of g of X, one 

can use 2 notations to write this 1 is to use this angular brackets or used this brackets and 

put a e outside, this e is expectation operator. This is to be read as expected value of g of 

X, this also has be read as expected value of g of X, this by definition is this integral g of 

X p x of x dx from minus infinity to plus infinity. In our lecture, I would prefer to use 

this notation, this show this angular brackets. This is the expectation operator that I will 

follow. Now, let us consider, what is the…, a b a constant, what is the expected value of 

a constant. 

What it is this is integral minus infinity to plus infinity a p x of x dx. a is a constant. So, 

we can take that outside and we are left with a into this minus infinity to plus infinity p x 

of x dx, what is this minus infinity to plus infinity p x of x d x, it is the probability of the 

sample space, which is 1. Therefore, this is a; so expected value of a is a.  

(Refer Slide Time: 44:20) 

 



Now, if g of X is x, what is the expected value of g of X? It is minus infinity to plus 

infinity x p x of x d x, which is nothing but the mean of the random variable x similarly, 

if I now define g of X as x minus eta whole square the expected value of g of X in this 

case will be the variance of x. So, to define mean and variance, we can use a expectation 

operator, which is more general, the mean and variance can be obtained as special cases 

of the general expectation of g of X. 

Now, we can give further meanings to g of X, we can say g of X is x to the power of n. 

We can call them as nth order raw moments, it is given by x to the power of n p x of x 

dx, we can similarly define nth order central moments, where I consider g of X to be x 

minus eta to the power of n. So, this is integral minus infinity to plus infinity x minus eta 

to the power of n p x of x dx. This we call it as nth order central moments, we define the 

ratio of the standard deviation to the mean as the coefficient of variation. 

Now, let us consider, what happens in this definition n equal to 0. So, n equal to 0 x 

minus eta to the power of 0 is 1 expected value of 1 is 1. Therefore, mu naught is 1 what 

is n equal to 1. This is expected value of x minus eta, this can be we can consider this 

specific case of n equal to 1 in some detail. So, this is minus infinity to infinity x minus 

eta p x of x dx, this is nothing but minus infinity to infinity x p x of x dx minus eta minus 

infinity to infinity p x of x dx. This is nothing but eta and this is nothing but eta So, this 

eta minus eta equal to 0. 

So, the first order central moment is 0. The second order central moment is nothing but 

the variance so on and so forth. Now, we define the ratio of third order moment to the 

cube of the standard deviation as skewness, similarly ratio of mu 4 by sigma to the power 

of 4 as kurtosis. These are non-dimensional entities coefficient of variance skewnesss 

and kurtosis are non-dimensional. 

Now, let us come to now this moment m n m 1 is expected value of x, which is eta m 2 is 

expected value of X square, this and we call this as mean square value in the square root 

of this is known as root means square value. These are some of the terms that you come 

across, let us consider a situation, where mean is 0 in which case you can see here m n 

will be equal to mu n because eta is 0. 

So, in that case m 2 will be nothing but variance and therefore, the root means square in 

that case is nothing but standard deviation, if means is 0, if mean is not 0, the standard 



deviation and root means square values are different the r m s value and standard 

deviation are synonymous, if and only if mean is 0. 

Now, we can consider this second order central moment and if I now, expand x is square 

plus eta square minus 2 x eta, I can write this as expected value of x is square. This is a 

constant. Therefore, expected value of constant is eta square and expected value of 2 x 

eta is 2 eta expected value of x and we see that this becomes the variance is nothing but 

means square value minus square of the mean that means sigma square plus eta square is 

mean square value. 

Since sigma square is greater than 0, it implies that the means square value has to be 

greater than eta square that is, the second moment m 2 must be greater than or equal to 

the square of the first moment, or in other words the moments of a random variables or 

not arbitrary, you cannot arbitrarily assign moments to random variable they have to 

satisfy certain in equalities. 
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Now, finally, we can remark that we can have 2 random variables, which may have the 

same mean and variance, but this does not means that the 2 random variables will have 

the same probability density function, because there other moments can be different. In 

discussion of moments, we talk about what is known as a moment generating function, 

that is defined as expected value of a quantity exponential of s x. 



So, that is given by minus infinity to plus infinity exponential of s x p of x dx, you would 

see that this is nothing but the Laplace transform of the probability density function. So, 

we define this function as a moment generating function, how does this word originate to 

see that we can expand exponential s x in a series 1 plus s x plus s x whole square by 2 

factorial, lets it. Now, the moment generating function is an expected value of this, so if 

you carry out the expectation operation on this, the left hand side expected value of the 

left hand side is the moment generating function and right hand side is 1 plus s into mean 

of x plus square by 2 factorial expected value of x is square so and so forth. 
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Now, if you differentiate this, now with respect to x and put s is equal to 0, what happens 

this this is 0 this becomes expected value of x this plus 2 x in to this. This 3 x square into 

this so and so forth, when I put s equal to 0 and all other higher order terms go to 0. 

Therefore the mean value can be obtained as d psi x by d s at s equal to 0, similarly the 

second derivative at s equal to 0 is the second raw moment, m 2 in general d n psi x by d 

s n is x to the power of n. So, because of this property, we call this expected value as a 

moment generating function, here s is a general complex number, if we make s to be a 

pure imaginary number, we get what is known as a characteristic function. So, we define 

the expected value of i omega x, where omega is real and I square is minus 1. This is 

exponential i omega s p x of x dx. 



You will recognize that phi x of omega is the Fourier transform of the probability density 

function, by expanding e raise to i omega x in a Taylor series and differentiating that 

with respect to omega one can show that, the nth order moment is given by the derivate 

of the characteristics function in this way at omega equal to 0. 

Now, by using inverse Fourier transform, if I know the characteristic function, I can 

evaluate the probability density function also that would mean a random variable, now 

can be expressed in terms of its characteristic function also and if you have the 

characteristic function for a random variable it also constitute the complete description of 

a random variable.  
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So, complete specification of random variable is through its probabilities space itself, 

omega b p or through the probability distribution function or probability density function 

or the moment generating function or the characteristic function. Alternately, we can 

specify m n for all orders, if I know m 1, m 2, m 3, m n what I could do is I could go 

back and construct, the moment generating function using this relation, using this 

relation and then, I can use universe Laplace or universe Fourier transform and get the 

probability density function. So, introduction of moment generating function and 



characteristic function and moments of a random variables expands our tool kit to model 

uncertainties. 

So, in manipulating mathematical models many times it would be easier to deal with the 

characteristic function easier to deal with moments not always we need to deal with 

probability density and distribution functions.  
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Now, we will consider 1 example, for a Bernoulli random variable let as find out what it 

is mean and variance. So, for a Bernoulli random variable there are two possible 

outcomes, x is equal to 0 and x equal to 1 the probability of x is equal to 0 is P and X 

equal to 1 is 1 minus p. 

So, the expected value of x is x i some somewhere i equal to 1 to 2 probability of x equal 

x i so x 1 is 0 0 into probability of getting 0 is p plus x 2 is 1 and the associated 

probability 1 minus p. Therefore, mean of x is 1 minus p. similarly the means square 

value is x i square probability of x equal to x i running from 1 to 2. So, here again 0 

square into p plus 1 square into 1 minus p which is 1 minus p , 

Now, what is variance it is mean square value minus square of the mean. So, it is 1 

minus p 1 minus p whole square and I get p into 1 minus p. So, square root of this is the 

standard deviation. The characteristic function for x form a expected value of e 

exponential of i omega x, so e x p i omega of 0 into p plus e x p into i omega into 1 into 



1 minus p, this is p plus 1 minus p exponential i omega. And from this, I can show that 

all m n is 1 minus p see you have noticed now, that this is nothing but m 1 which is 1 

minus p this is 1 minus p and this is m 2, this is 1 m 1, this is m 2 which again 1 minus p 

using this characteristic function, you can show that all m n are 1 minus p for this 

random. So, we will close this lecture at this point, we will continue with this in the next 

lecture. 


