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We have been discussing Monte Carlo simulation methods for studying randomly 

exacted structural systems. So, we reviewed certain principles of statistics in the previous 

lectures, and today, what we will do is, we will discuss how to simulate random variables 

on a computer. 
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So, let X be a random variable with probability distribution function P x of x. The 

problem on hand is, how to generate samples of, samples x i say 1 to n of X on a 

computer, so that these numbers are statistically indistinguishable from realizations of 

the random variable X. So, that is the problem; this we have to do on a computer, not 

through a physical device. 
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The starting point for this discussion, what are known as pseudorandom generators, these 

are deterministic algorithms, which produce outputs, which are statistically 

indistinguishable from realizations of random variables. These random variables are 

typically, taken to be uniformly distributed between 0 and 1. So, pseudorandom number 

refers to random numbers, which are uniformly distributed between 0 and 1. So, this is 

the starting point in digital simulation of random variables; random numbers are taken to 

mean numbers, which are distributed uniformly 0 to 1. 
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So, the first task on hand is how to simulate realizations of uniformly distributed random 

numbers, which are uniformly distributed in 0 to 1. There are certain deterministic 

algorithms, which will produce these random numbers and these are known as linear 

congruential generators. So, the algorithm here is, X i is (a X i minus 1 plus c) modulo 

m. So, I will explain what these terms are - X i’s are generated through this map and R i, 

which are the pseudorandom numbers, are defined as X i divided by m; these constants 

here: a, c, m and X naught, it should start with, the, i equal to 0, which is X naught. X 

naught has to be specified, they are integers to be specified by the user. So, a is known as 

a multiplier, which is positive; c is known as increment, which is non-negative; m is a 

modulus, positive; X naught is a seed, greater than or equal to 0. 

This operation modulo m means, modulo m returns the remainder after dividing this 

number (a X i minus c plus c) by m; the remainder is returned as a, the output. Now, 

these, this is a map whose period is less than or equal to m, that is, for each of this map, 

there is a quantity known as period, and after, suppose i ranks from 1, 2, 3 and up to the 

period, then it repeats; the same sequence repeats. This period, further, this algorithm is k 

and k can be less than or equal to m. So, ideally, we want k to be equal to m, to be, to 

make best use of this generator and there are theorems in number theory, which states, 

under what condition a congruential generator has full period m, and it has something to 

do with choice of a, c and m. 
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So, the gcd of c and m must be equal to 1, and a equal to 1 mod p for each prime factor p 

of m, and a 1 mod 4 if 4 divides m. So, if these conditions are satisfied, the period will be 

m. So, we need not worry about the theoretical background behind this because it is a 

specialist area, which belongs to the domain of computer science and number theory. So, 

we will use these tools as starting point in our discussion. 
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But to understand what we are going to use, it is useful to simulate the output of this map 

for a few choices of the parameters. So, let us take X i is (9 X i minus 1 plus 3) modulo 2 

to the power of 4. So, the period here can be 16 and indeed, it turns out, that after every 

16th number, the signal repeats. So, this part of the signal simply, repeats after every 

16th number; this is the 16th number and this part repeats. So, there are 16 random 

numbers that we can generate through this; not very useful for practical applications. 
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Now, similarly, we make another choice. Again, the period is 16, we are, what we are 

doing is we are changing the initial value. This initial value is 3 here and this is made as 

12 here, and this is known as seed of the random number generator. So, for different 

seeds, we get different sets of 16 numbers, but that repeats. 
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Now, on a computer, typically the choice of a, c and m will read something like this - 

this m is 2 to the power of 31; and, this a is this large number; and for X naught equal to 

12, I have simulated 100 numbers and I have shown the plot here and you can show that 



the period of this generator is given by this number. So, this is a fairly large number, if 

your, if your application uses numbers, total number of random numbers that you are 

using is less than this, you can go for this. 
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So, if you take 100 such numbers and draw the empirical probability distribution 

function, if it is uniformly distributed, it should lie along this red line and we can conduct 

for example, hypothesis test like, call Kolmogorov-Smirnov test and see, whether we can 

accept the hypothesis, that these numbers are coming from a population, which is 

uniformly distributed 0 and 1 at some significance level, so that is, whenever hypothesis 

testing helps us to access the random numbers. 
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So, if I plot now these 10 numbers, suppose I am plotting (R i plus 1) versus R i, so our 

worry will be, is there any order in this sequence of numbers? If it is truly random, there 

should be no hidden orders. So, here if I plot i plus 1 versus i, this should be randomly 

distributed in this space. So, similarly, I can do with similar higher dimensional spaces 

and we never know, whether such an order exist or not, so we have to go on checking. 
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So, if I use 10000 these numbers, you can see, that the agreement between uniform, 

uniform target, uniform distribution and the empirical distribution is pretty close and 



again, we can do the K-S test and see, whether we can accept the hypothesis, that these 

numbers originate from population with uniformly distributed probability distribution? 
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Now, these 10000 numbers are plotted, that is, (R i plus 1) versus R i is plotted and we 

can see, that this is some kind of random image. I cannot discern any pattern here, so 

there is no reason to reject them, these numbers as being random. This story is not 

always so, I will come to that slightly later. Now, I have shown a few random numbers 

starting with different initial conditions, that is, seed; if I start with 10, I get these 



numbers, if I start with 11 I get different numbers, and so on and so forth. So, just for 

illustration, how these numbers behave. 
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Now, if I take m to be 256 and a to be 13 and c to be 3, and generate say, few random 

numbers and I think I have generated some 10000 numbers, and if I show the empirical 

probability distribution function, it matches very well with the target distribution. 
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But if we look at the (i plus 1) versus i plot, there is a structure, so obviously, this is 

alarming, we cannot accept these as random numbers. More such examples, I have 

shown the parameters a, c and m, so we can see here, this is some kind, in all these 4 

cases, there are quite a good amount of patterns that emerge and this cannot be trusted as 

random numbers. So, if you make these choices, I mean, if you try generating random 

numbers, then you have tough task on your hand, you have to perform several test and in 

the literature, there are several test that are discussed in this context. So, danger lurks 

everywhere, so you have to be cautious. 
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Now, how about order in higher dimensions? I am plotting (i plus 1) versus i. Suppose, I 

have plot (i plus 1), (i plus 2) versus (i plus 1) versus i in a 3-dimensional space and they 

should be randomly distributed. How do I know in 5-dimensional space there are no 

orders? So, this is a question that is almost impossible to answer, so it depends on the 

application. Suppose, we are evaluating a 2-dimensional or a 3-dimensional integral 

using Monte Carlo simulation, you should ensure that at least, in 3-dimensional there are 

no manifest orders in these numbers. So, this is where one has to be cautious. 
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Now, there are other strategies like combinations of generators to deal with to ensure that 

there exists randomness in higher dimensions. So, there are various algorithms, one of 

that I will state here. So, you, you generate, you take 3 generators, (X i plus 1) is this, (Y 

i plus 1) is this, (Z i plus 1) is this and then you define (R i plus 1) as a kind of sum 

shown here, modulo 1, and this will be, this is supposed to behave well in 3-dimensions, 

well, in terms of being random. 
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Now, I talked about seed. So, on a computer, when you are generating random numbers, 

if you want to debug your program, every time you run the computer, suppose you are 

generating 10000 random numbers, it is useful to get the same 10000 numbers. One way 

is to generate them and store and read from the disk, but in the program cell, it is 

infeasible, if you are really doing a practical problem to store all the random numbers 

before and draw from them. So, the best way is to start with the same seed and that 

would ensure, that we get same set of random numbers. 

So, this also, this helps us to reproduce the sequence on one hand and also, it, we can 

avoid storage of random sequences on the computer. Now, if you want to prolong the 

sequence, you have generated 10000, you need ten more thousand random numbers, you 

can use the last number in your first sequence as a seed for the next one, so that you 

continue with same sequence, or you can start a new sequence with a randomly chosen 

seed. For example, clock time on the CPU or some other numbers, but this approach 



leads to numbers that are not reproducible. If you do not specify seed yourself, you 

cannot reproduce the sequence of random numbers. 

I am talking about generation of random numbers on computers. There are strategies 

where the random numbers are drawn from a physical process, for example noise is 

drawn from atmosphere through a radio, so that noise is digitized and used as random 

numbers. So, there is no algorithm there and we bank on certain physical mechanism for 

production of random numbers, but for, for the Monte Carlo application that we are 

discussing, we bank on random numbers, which are generated on a computer. 
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So, selecting pseudorandom number generators, you know you need to, I mean this 

choice is based on theoretical studies on random number generators. It involves number 

theory and study of non-linear maps, so if you are doing empirically, you have to test for 

uniformity, test for independence of pairs and k tuples, and so on and so forth. There are 

some guidelines: period to be at least 2 to the power of 27, that is, about 10 to the power 

of 8, and k tuples about up to the order of 10, as uniformly distributed as possible in 10 

and k dimensional spaces. So, you can do some of these tests using hypothesis testing 

methods and see whether these numbers pass the, I mean, you can accept these numbers 

according to the given level of significance. 
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Now, the moral is, you, if we are using pseudorandom numbers on a computer you need 

expert help. Most of the professional softwares have random number generators, that is, 

numbers that are uniformly distributed in 0 and 1, which are based on algorithms, which 

are theoretically investigated and you are advised to use such algorithms. If you attempt 

to dissimilate your own random number, you have to be very careful about many aspects 

of the nature of these random numbers. So, you use what is professionally available and 

trust; that is the moral. 
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There are few references I have listed here: book by Dagpunar, Ripley, Robert and 

Casella and Liu, which discusses not only the details of pseudorandom number 

generators, but also few of the methods that I am going to discuss in due course. 
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Now, we have generated now uniformly distributed random numbers. How do we 

generate say, Gaussian random numbers? So, we here, many strategies are possible. We 

recall, when we studied transformation of random variables, there was an algorithm 

known as transformation, known as Box-Muller transformation; we will quickly recall 

what it is. So, let X and Y be independent and uniformly distributed random variables 0 

to 1. I define U as minus 2ln X to the power of half cos 2 pi Y and similarly V, instead of 

cos here, I have sine. The problem is to find the joint probability distribution function of 

U and V. We have solved this problem and we have shown that U and V are independent 

and jointly normal, they have 0 mean and unit standard deviation. So, that we have done; 
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These are the steps where we find the jacobian and go through this and we get this joint 

probability density function, that would mean U and V are independent; U is normal with 

mean 0 and standard deviation 1, V is normal with mean 0 and standard deviation 1. 
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So, we could use, now that we know how to generate uniformly distributed random 

numbers, we can use Box-Muller transformation and generate Gaussian random 

numbers. So, generation of Gaussian random numbers, once you know how to generate 

uniform random numbers, is reasonably straight forward. Again, if your random number 



generated in the, for uniform distributed random numbers is bad, it will get into U and V 

also, so I have to be careful. 
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So, I have used 1000 numbers and plotted the empirical probability distribution function 

of, random, Gaussian distributed random numbers; blue line is the simulation, red is the 

target, and again, we see reasonable agreement between the two. If I use the same results, 

if I plot on normal probability paper, they look like this and qualitatively we can see that 

these numbers are lying on a straight line. And I did perform the Kolmogorov-Smirnov 



test at 5 percent significance level and I reached the conclusion, that we can accept the 

hypothesis, that sample is drawn from a population of normal random variables with 0 

mean, unit standard deviation at 5 percent significance. So, it passes the test. 
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Similarly 10000; the agreement, as we can infer from visual inspection is much better 

now and if you conduct the test again, plot on the, you know, do the case Kolmogorov-

Smirnov test again, we will be in a position to accept the hypothesis, that these numbers 

are drawn from a standard normal population at 5 percent significance level. 
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So, these numbers I have displayed on 2-dimensional map, (U i plus 1) versus U i and we 

do not recognize any pattern in this, so this seems to be acceptable again. Just a word of 

caution, I have used the congruential algorithm for generating uniform distributed 

random numbers X and Y, I have simulated following this prescription and then I have 

used a Box-Muller transformation, and the results on U and V are shown here. This is (U 

i plus 1) versus U i, this one and this is (V i plus 1) versus V i. So this has disturbing 

levels of order, the numbers and if you use these numbers in your modeling works, you 

are bound to face lots of difficulties. 
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Now, I talked about Gaussian distributed random variables, how about X, which has a 

given probability density function P X of x. Now, we can take the, as a starting point our 

ability to generate standard normal random numbers, 0 mean, unit standard deviation 

random numbers. Now, we consider the transformation P X of x is phi of Z, where 

capital phi is the probability distribution function of standard normal random variable 

and X is the target random variable, and X is written as X equal to P X inverse phi of Z. 

So, one of the prerequisite for applying this method is that you should be able to invert 

the probability distribution of the target random variable. 

Now, if you follow the rules of transformation of random variables, you can show that if 

you generate X according to this rule, the probability distribution function or density 

function of X will be identical to the target probability density function. Now, so what 

are the steps we simulate? Standard normal random variables use this transformation and 

get samples of X. So, this is very straight forward exercise, provided you know how to 

invert your probability distribution function. 
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So, we can start with an exponential random variable. The probability distribution 

function is 1 minus exponential minus lambda x. So, the transformation here is 1 minus 

exponential minus lambda X, this is random variable X equal to phi of Z and from this if 

I solve for X, X will be minus 1 by lambda log of (1 minus phi of Z). So, I simulate 

normal random variables 0, 1 and use the transformation, generate the corresponding 

sample of X. So, I have done with 100 numbers here for some value of lambda and you 

can see, the blue line is the, is empirical probability distribution function generated from 

the samples, and red is a theoretical or the target probability distribution function. And 

with 10000 samples, the match is lot better as to be expected, and again, we can perform 

the Kolmogorov-Smirnov test and be sure, that we have succeeded in simulating 

acceptable random numbers. 
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So, this is a map of X (i plus 1) versus X i. Again, I do not see any discernible order in 

this, so it looks fine. 
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Another example, how do you simulate Rayleigh random variables? So, p X of x in this 

case is x by sigma square exponential minus x square by 2 sigma square, where x to 

transform 0 to infinity, and the distribution function here becomes, you can integrate this 

and we get 1 minus exponential minus x square by 2 sigma square. So, the 

transformation we are looking for is 1 minus exponential minus X square by 2 sigma 



square is equal to phi of Z. So, you invert this and I get X, which is a seed function of Z, 

as shown here. So, once this is determined, the ball gets rolling, we simulate random 

numbers Z normal 0 1, apply this transformation, get sample of X. 
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So, here with 10000 samples for sigma equal to 2, I see that the match between 

simulation, which is blue line and the red, which is the target, is quite good. 
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Now, similarly, we can, I have done few more exercises I have generated 1000 Weibull 

random numbers on and displayed on Weibull probability paper, they look fine. 
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Now, what happens if you are not in a position to invert the probability distribution 

function? How will you proceed? For example, in our earlier studies on envelopes, I got 

the probability distribution for an envelope as displayed here. There is Bessels’s function 

here and r sits here and r sits here and r is here, and how do you, this is density function, 

so you have integrate this with respect to r and find the distribution function and then 

invert it. So, it is, it is very unlikely that we succeed in this. 

Similarly, you take the probability distribution of the phase, you have cos square phi sine 

square phi sine phi cos phi etcetera, etcetera, and it is very unlikely, that you will be able 

to first of all find out the probability distribution function and then invert it. So, how do 

we proceed in such situations? So, the method of transformation of random variables 

does not seem to, I mean, it is not a promising method for these problems. 
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So, there is a method known as accept and reject methods, accept-reject methods. So, the 

logic of this is as follows, let X be a random variable with pdf p X of x. Let it be required 

to simulate samples of X. Now, what I do is, I define a random variable U, such that it is 

distributed uniformly in 0 to p X of x. Now, that would mean U and X are mutually 

dependent with the joint density function, U of, UX (u, x) is equal to 1, whenever u of, 

whenever u lies between 0 and p X of x, where x itself takes value from minus infinity to 

plus infinity, otherwise it is 0. How do you get the marginal density function of X from 

this? You have to integrate with respect to u, now that is nothing but u is 1 for whenever 

it takes value from 0 to p X of x. Therefore, it is integral 0 to p X of x du, so p X of x 

equal to 0 to x p X of x du. It is a very profound result, quite simple to understand, but it 

has very deep implications. 
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So, you, let us look at this again p X of x is 0 to p X of x du. Thus, p X of x is obtained 

as a marginal probability density function of p UX (u, x). Now, can we simulate samples 

of X and U without inverting P X of x and by using this logic? Now, this U is known as 

an auxiliary variable, so the story here is, we generate (X, U) by generating uniform 

random variables on the constrained set, that is, set of (x, u), such that u takes value 

between 0 to p X of x. That means, simulating X from p X of x, that is, according to this, 

probabilistic law is equivalent to simulating these pair (X, U), so that x, the set, 

constrained set (x, u) is uniformly distributed. This script, u means, it is uniformly 

distributed. 
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Now, how do you translate this idea in to a working algorithm? Now, I will not get in to 

too many details, I will illustrate this by few examples and the simple explanation. So, let 

X be a random variable with pdf p X of x and x belong to I and interval I. Now, what we 

do is we represent p X of x as a number M into g of x into h of x, where M is a number 

greater than 1 and g of x takes values between 0 and 1 and h of x is a valid probability 

density function. Now, let U be between 0 and 1 and Y be the random variable with pdf 

h of y and h of y should be such, that you should be able to sample Y from h of y. Now, 

p Y of x condition on U less than or equal to g of Y can be shown to be p X of x. 
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How do you show that? You use Bayes’ theorem and consider p Y of x condition on U 

less than or equal to g of Y, by using Bayes’ theorem I can write it like this, I mean, use 

conditional probability and then rewrite this in a slightly different form. Now, we 

consider now here, there is one probability U of U less than equal to g of Y condition Y 

equal to x. Let us consider that here and this is nothing but g of x because U is uniformly 

distributed; so this is g of x. Similarly, U less than or equal to g of Y is, if you carry out 

these analysis, you can show, that this is equal to 1 by M. Now, therefore, you substitute 

this and this into this, we can show, that this conditional probability density function is 

nothing but p X of x. 
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So, the algorithm is, so you generate X from g of x and U from 0 to 1 and we accept Y 

equal to X, if U is less than or equal to p X of x divided by Mg of x, or you go back and 

do this calculation again. 
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Now, I will give an example. Let us consider a probability density function, which is a 

triangle between 0 and minus 1 to plus 1, that means, I am looking at this blue line, I 

want to draw random numbers or generate random numbers whose probability density 

function matches with this. So, what I do is I construct this red line, which envelopes this 

density function and that will be my m, this Mg x. 
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Now, I will follow this algorithm and if I do this exercise I get these numbers. This is 

characterless, I mean, nothing can be inferred from this except that they are lying 

between minus 1 and plus 1, but if I draw the probability distribution function, blue is a 

simulation, red is the target and this again, is not quite revealing. But if you draw the 

histogram, you can see, that the numbers are along this triangle. 
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Another example, if you want to draw random numbers from a pdf, which is made up of 

say 2, this is a 1 normal pdf x with mean 2 and standard deviation 1 plus a 2 normal x, 

again mean 6 and 1, this is my p X of x. I (( )) a 1 plus a 2 is 1, you can easily see that 

inverting this for finding X is quite difficult. You can find out p X of x in terms of the 

normal probability distribution function, but that itself is not very easy to invert. So, how 

do you proceed? So, we can use this method. 
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So, what we did, what we do is, this blue line is the probability density function, which is 

the target and I select this M into g of x to be a normal like density function and that m is 

selected, so that this envelopes the target density function; that is very important because 

the theory works only under that situation. 

So, this graph shows the samples again, which are not very revealing, but the probability 

distribution function, you can see, that the agreement between blue line simulation, red 

line is the target, is quite good here. And this is the histogram, you can easily see, that 

there are 2 modes and numbers are clustering around the one point here and another 

point here, this is 1 and this is 6; so, this is 1 and this is 6. 
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So, if we plot x of i versus i, you can see that the numbers are clustering around 1 and 6. 

So, these clusters correspond to the modes that we are seeing here. So, without inverting 

the probability density function or the probability distribution function, we were able to 

simulate random numbers. So, this is, this method is applicable when the form of the 

probability distribution function becomes too complex and we face difficulties in 

inverting. I have, I have talked about scalar random variables, how about vector random 

variables? 
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So, we will start with simulation of vector Gaussian random variables. Suppose, I have a 

sequence of n random variables X i, which are correlated Gaussian random variables and 

how to simulate? If they are uncorrelated, I have case of n scalar random variable, each 

one I can simulate separately and since they are the independent, it does not really 

matter. But now they are correlated, so mean of X i mu i and the covariance is (X i minus 

mu i) (X j minus mu j) C ij. Now, what I do is I first remove the mean and make the 

standard deviation as 1. By using this transformation, X i prime is X i minus mu i 

divided by sigma i. Obviously, the mean of X i prime is 0 and if you write the covariance 

of this X i prime, you can see that this would be nothing but the correlation coefficient 

matrix of X i and along the diagonal we get 1 and this is symmetric matrix. 

Now, our objective is to therefore, simulate X i prime whose mean is 0 and correlation 

covariance matrix is this fully populated square matrix symmetric, etcetera. Now, the 

strategy we follow is we use a transformation, we propose a transformation Y is T 

transpose X prime. Now, mean is preserved through this transformation, but covariance 

get discarded, so the covariance expectation of YY transpose would be T transpose C 

prime. Though T is yet to be selected and I can always select T, show that T transpose C 

prime T is a identity matrix. So, how do you get the T matrix? We study the Eigen values 

of C prime matrix. 
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So, we consider the Eigen value problem, C prime alpha equal to lambda alpha and we 

solve for the n Eigen values by solving this characteristic equation, and corresponding to 

each one of that, we get an eigenvector. And since, C is positive definite lambda, i will 

be positive and these Eigen vectors are assembled into a single matrix, which is square 

matrix. And we have seen in discussion on vibration problems, that these Eigen vectors 

have orthogonality property and we can show that phi transpose phi i equal to 0 for i not 

equal to j and phi i transpose C prime phi j equal to 0 for i not equal to j, so that phi 

transpose C prime phi is I; I is the identity matrix, so that would mean, we can take T to 

be phi. 
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So, once I do that, I am able to transform the given random variable. So, there are 2 step 

transformation - the first one is simple, I remove the mean and divide it by standard 

deviation, so X i prime has 0 mean and unit standard deviation, and it become non 

dimensional. So, this is good for us and then I diagonalize the correlation coefficient 

matrix or the covariance matrix. So, I have find out T by finding the Eigen vector matrix 

and moment I find that, what I will do is, I will simulate X prime, sorry, simulate Y, 

which has 0 mean and mutually independent elements. I simulate Y, use this 

transformation, get X prime and from X prime, I work backwards and get X i. So, the 

main task here is to diagonalize the covariance matrix (( )) and the building block is our 

ability to simulate normal random numbers with 0 mean and unit standard, unit standard 

deviation, for a scalar case. 
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So, we can do this for example, if we have a target mean vector of point 0.1 and 2.0 and 

covariance: 1.2, 0.3, 0.3, 4.5, I will remove the mean and divide by the standard 

deviation, I get the covariance matrix is as 11, 0.1291, 0.1291, this is Eigen vector 

matrix, these are the Eigen values. And then, I have done the simulation in the 

uncorrelated normal space, use this transformation work backwards and got X, and with 

thousand samples, I am able to get a mean vector of 0.1224 as against 0.1 and 2.0311 as 

against 2.0 and covariance of 1.1077 as against 1.2, 0.2826 as against 0.3, 4.47 against 

4.5. 

Now, again we can do hypothesis test and verify, whether we can accept the hypothesis, 

that for instance, there marginals are Gaussian, the covariance matrix transform a 

population whose covariance matrix is this, etcetera. So, for that, of course, you need to 

know the sampling distribution of covariance, estimates of covariance; that we have not 

discussed, may be some point in future lectures, I may be able to say few things on that. 
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 . 

So, this is pdf of X 1; blue is empirical, red is analytical, target. This is for X 2, so in 

either cases, the comparison between theory and simulation is quite good. And these are 

the, this is a display of Z 2 versus Z 1; again, we do not see any discernible patterns. 
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So, a vector of Gaussian random variables does not pose any major difficulty for us. 

How about vector of non-Gaussian random variables? So, there are different approaches, 

one is what is known as Rosenblatt transformation. So, I will illustrate this; this is an 

extension of method of transformation of pdf’s. So, let X 1 and X 2 be two Gaussian 



random variables and joint probability distribution function P 1 2 and density function, 

lower case p 1 2, and marginal pdf’s P 1 P 2, marginal density is P 1 P 2, that describes 

X 1 and X 2. 
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. 

Now, let u 1 be distributed normally in 0, with mean 0 and standard deviation 1 and 

similarly, u 2 normal with mean 0 and 1, and let u 1 and u 2 be independent. So, I begin 

by defining p 1 x 1 equal to phi u 1 and p 2 of x 2 condition on x 1 is phi u 2. Based on 

this transformation, we can show that x 1 and x 2 are…, the density function of x 1 and x 

2 will be according to the target joint density function. So, to do that, we apply the rules 

of transformation of random variables and find the jacobian, and we can do this 

calculation, the details are displayed here, and we get in fact, the joint density between x 

1 and x 2 will be indeed, be the target density function. 
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So, how do you implement the method? You simulate U 1 and U 2 and you find out X 1, 

by X 1 equal to P 1 inverse of phi of P 1; then, you find out X 2, X 1 is already simulated 

for every value of X 1, you come here and find out the inverse of this. So, you will be 

able to proceed with the implementation. 
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Now, this generalization to N random variables is straight forward, but it would involve 

inversion of increasingly more complicated conditional probability distribution 

functions. If you can do it, you will able to proceed according to this. 
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Now, most often, we will not be in a position to provide the Nth order joint probability 

distribution function of random variables in practical applications, what we would be 

able to provide would be the first order probability distribution function and a covariance 

matrix. For example, if you see the joint committee on structural safety, there is a 

document, which has attempted to provide certain canonical distributions for properties 

of construction material and if you look at the properties of steel according to this 

document, the five variables of steel as a material, namely: yield, strength, ultimate 



tensile strength, Young’s modulus, Poisson’s ratio and ultimate strain, the coefficient of 

variation is specified. Mean can be taken from your test coupons whatever, but the 

coefficient of variation is this and a correlation coefficient matrix is given here and also 

stipulated is a fact, that the first order probability density function for each one of these 

variables is lognormal. 

Now, I want to simulate samples of these 5 random quantities, which have this first order 

pdf, this coefficient of variation and this correlation coefficient matrix. Obviously, as a 

set of 5 random variables, the information that is provided here would not lead to a 

complete specification of 5-dimensional random variables, for that you need a 5-

dimensional probability density function, but most often, as I was telling in practical 

application, the kind of information we will have, will be of this kind. 
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So, how do you proceed? So, we start with a case of 2 random variables. Let X 1 and X 2 

to be 2 random variables, such that X 1 and X 2 are not completely specified, knowledge 

on X 1 and X 2 is limited to first order pdfs and the covariance matrix. Now, how do you 

simulate X 1 and X 2? So, the question is if you transform X 1 and X 2 to standard 

normal space, you can start with standard normal random variables and transform back 

to the required X 1, X 2 random variables. 
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So, here what we do is, we define P X 1 of X 1 is phi of U 1, P X 2 of X 2 is phi of U 2 

where U 1 and U 2 are iid normal, mean 0, standard deviation 1; not iid, sorry, they have 

correlation coefficient rho 1 2 star. They are not iid’s, they have 0 mean and unit 

standard deviation, but they are correlated, this correlation is unknown, what I know is a 

correlation between X 1 and X 2. So, I need to develop a method to find correlation 

between U 1 and U 2, so that the correlation between X 1 and X 2 will meet the specified 

target value. So, again we go through the rules of transformation of random variables and 



we can indeed show that the, as far as probability density functions or marginal are 

concerned, this transformation leads to satisfactory results; there is no problem there. 
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But the question of finding rho 1 2 star, that means, we will be, once I implement this 

transformation, U 1 and U 2 will have this correlation coefficient. So, to simulate U 1 U 

2, I need to know this. So, how do we proceed? So, what we do is, we write an 

expression for rho 1 2 star using this transformation. So, if I do that, I get, it is fairly 

involved, but one could easily digest this, it is tedious, but not very complicated. 



So, if you do this, you will get an equation for rho 1 2, which is given the correlation 

coefficient between x 1 and x 2 and rho 1 2 star, which is the correlation coefficient 

between u 1 and u 2, which is not known. So, all other parameters in these equation are 

known and we need to solve for rho 1 2 star. So, this is an integral equation and it looks 

quite formidable to solve, but there is very simple strategy to deal with this. So, what we 

could do is, we know, what we are asked to do is for a given value of rho 1 2, which is 

on the left hand side, we need to find rho 1 2 star, which is buried inside the integral, but 

we know that rho 1 2, rho 1 2 star are both bounded between minus 1 and plus 1. 

So, what I will do is I will start by assigning values for rho 1 2 star between minus 1 and 

plus 1 and evaluate this integral and find out, what is rho 1 2 after I do this exercise, for a 

few complete range of minus 1 to plus 1? It would, if there is a root, it will certainly lead 

to the one that we want for rho 1 2. 
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So, the game is, what we do is, we run the calculation and for every value of rho 1 2 star, 

we find out rho 1 2 and this is the target value. So, once I do this, I will have the value 

known in the neighborhood and I can use either better approximation or an interpolation 

and arrive at the corresponding rho 1 2 star, which is precise. We will have a table of 

values for rho 1 2 in terms of rho 1 2 star and we can interpolate or do some refined 

calculations and arrive at this. So, this works quite well in applications. 
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Now, this I have illustrated for two-dimensional case, we can generalize n-dimensional 

case, so you have to take pairwise. This transformation by the way, is known as Nataf’s 

transformation, so this can be extended to n-dimensional cases, requires a solution of an 

integral equation. This itself can be done numerically and for n-dimensional, the number 

of integral equations to be solved becomes n into n minus 1 by 2 and other forms 

actually, within the framework of this. Suppose, we consider 3 random variables, it may 

so happen that for a pair of two random variables, I know the joint density functions. 

So, what I know, for example could be marginal density of x 1, x 2, x 3, joint density 

between x 1 and x 3 and covariance matrix between x 1, x 2, x 3. So, we are falling short 

of complete specification by different way, may we can fall short of the complete 

specification in many ways, but in each one of the cases the Nataf’s model can be used. 

And whatever is not available can be, I mean, we can simulate, we can transform with 

the available information the 3 random variables or n random variables to equivalent 

normal random variable and implement the method. 
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So, steps for simulation of 2-dimensional Nataf random variables: you solve for rho 1 2 

star by solving this, then simulate Z as (0, rho star), then simulate X 1 and X 2 using this 

transformation. So, to simulate Z as (0, rho star), again we have to find Eigen values 

analysis of rho star, generate independent normal random variables, apply the 

transformation and then simulate Z. And once you simulate Z, you have to get into this 

non-linear transformation and you will be able to get X 1 and X 2. 

Now, obviously, this cannot be done with pen and paper, you need to write a computer 

program for this, then only you will be able to see the working of different steps of this 

method. 
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So, let me consider a couple of examples. So, 1st example is X is uniformly distributed 

between 0 to 100 and Y is exponentially distributed with a parameter 1 divided by point 

naught 8 and Z is Rayleigh distributed with parameter 12 and the correlation coefficient 

matrix is displayed here. Now, I want samples of X, Y, Z, so when I simulate I should 

get uniform distribution for X, exponential distribution for Y and Rayleigh distribution 

for Z and the correlation coefficient matrix for these 3 random variables should be, 

should be similar to this. So, we have done this I think with 1000, 5000 samples. Now, 

the target mean for this is 50, 12.5 and 15.039, that can be calculated from the given 

values of the system pair. With a simulation, we got a mean of 50.25, 12.22, 15.29 and 

standard deviation target is 28.86, 12.5, 7.86, etcetera and simulated one is 29 point 

something, 12.29, 8.0, etcetera. 

Again, we can test the hypothesis, whether the samples are drawn from a population with 

mean 50 or not? We can do a hypothesis test on variance, you can do a chi square test, 

you can use Gaussian sampling distribution here, you can use chi square distribution, and 

so on so forth. How about the simulated covariance? What was simulated? This is the 

target and what was simulated is displayed. There is a broad agreement; there is no 

reason to suspect that things are wrong. 
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Now, some displays of these results. The 3 target probability density functions are shown 

here: this blue is a uniform, this is the exponential, this is Rayleigh. The simulated pdfs, 

so the red and blue is, the simulation results for uniform, the red and blue match well, 

here, pink and cyan and green and black, the, this is Rayleigh, this is uniform distributed, 

this is exponential. So, again we can see that the empirical probability distribution 

function and the target probability distribution function are in good mutual agreement. 
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The plot between rho star and rho is shown here. So, this is minus 1 to plus 1 and this 

minus 1 to plus 1 and this is for 1 2, that is, x 1 x 2, x 1 x 3 and x 2 x 3. So, we can, this 

is a plot that we get by solving the integral equations for various values of minus 1 to 

plus 1 for rho star. And this is the rho that we get and we know, that target number here 

and we can read, of, from here the corresponding rho star. So, this plot has to be 

generated as a part of the solution to the problem. 
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So, this simulation method works for…, Therefore, this is reasonably complicated 

problem in simulations and this method works quite well. One more example, this is 

some displays of samples: this is samples of uniformly distributed numbers, this is 

exponentially distributed numbers, this is Rayleigh distributed numbers. 
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I have a one more example: X 1, X 2, X 3. X 1 is lognormal, X 2 is lognormal, X 3 is 

type one asymptotic and the target mean 40, 50, 1000; standard deviation 5, 2.5, 200 and 

the correlation coefficient matrix is this. 

(Refer Slide Time: 49:56) 

. 

So, we can run through these calculations again. So, this is the equivalent correlation 

coefficient matrix for the Gaussian random numbers, this is the rho star. Now, we do 

checks, the mean that we got is 40.02, 50.02 with 5000 samples and 997 and then these 

things should be compared with 40, 50, 1000. 
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So, this is 40 point something, 50 point something, 997 point something. Similarly, 

standard deviations 4.95, 2.49, 198, so on and so forth. This is simulated correlation 

coefficient matrix. So, again, things are, things seems to be alright and these are the 3 

target probability density functions X 1, X 2, X 3 to depict how non-normal they are and 

also shown on this graph, the corresponding plot of a normal random variable, so that 

difference between the two gives an idea on the non-gaussianity of the corresponding 

random variable. 

(Refer Slide Time: 50:54) 

 



This is simulation results on X 1, X 2 and X 3; again, blue is simulation, red is the target 

and we can see, that this is quite a good mutual agreement. 
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Now, a slightly more complicated example, there are 7 random variables: X 1 is uniform, 

X 2 is lognormal, X 3 is lognormal, x 4 is normal, X 5 is extreme value probability 

density function of type one, X 6 is again extreme value type one, X 7 is normal and P 1 

and P 2 are the parameters of the distributions. There are 7 random variables and the, this 



is the mean and standard deviation of 2 of the 7 random variables, and this is the target 

correlation coefficient matrix. 
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So, it is one diagonal, there are (( )) diagonal terms here, you can see some of them are 

negative and some of them are positive and along the diagonal we have unity. Now, we 

need to simulate say, 10000 numbers or 5000 numbers of these vectors of realizations of 

X with 5000 samples and using the Nataf transformation method, the problem is solved. 

And we have the simulated value of the mean, standard deviation and the correlation 

coefficient matrix and these have to be compared with the corresponding target values 

and again, they are quite good in a good agreement between the target and simulated 

numbers, can be remains in these numbers. That agreement, again let me emphasize, can 

be actually, be objectively assessed using hypothesis testing methods, with using 

appropriate sample distributions and for specified significance levels. 
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Now, this is an equivalent rho for the Gaussian random variables obtained by solving 

that n into n minus 1 by 2 number of integral equations that is displayed here, on this of 

course, there is no verification, this is an intermediate step. So, these are the random 

variables that we are simulating, the red plots are the target probability density function, 

black is the standard normal just to, is not the standard normal, the corresponding normal 

distribution with same mean and same standard deviation, just to give an idea on how 

much this specified first order distributions depart from the normal distribution. 



(Refer Slide Time: 53:22). 

 

(Refer Slide Time: 53:30) 

. 

So, there is considerable departure here, here and of course, uniform distribution. There 

is a, this X 1, there is good departure and whereas, here although the random variable 

lognormal, the agreement is between normal and non-normal; the differences are not that 

much. 
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So, this simulation results with 5000 samples, blue is simulation, red is a target, this is 

uniform distribution, this is lognormal, lognormal I think, this is normal and so on, 

extreme value is normal, so on and so forth. So, again, the agreement is quite 

satisfactory, so this method seems to work quite well. 
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These are realizations; these are characterless, just for, to get a visual field for what we 

are doing, these are the numbers. And we have reached the end of this lecture. So, to 

summarize, so for what we have been able to do is to develop methods to simulate 

samples of scalar Gaussian, non-Gaussian random variables and vector Gaussian and 

vector non-Gaussian random variables. For vector non-Gaussian random variables, we 

have 2 methods, that is, the Rosenblatt transformation method and the Nataf 

transformation method. Rosenblatt method can be used if you have complete 



specification of the vector non-Gaussian random variables in terms of their joint density 

functions. The Nataf can be used in case when information is partial. 

So, in the next lecture what we will do is, we will extend this discussion to cover cases of 

simulation of random processes. How to simulate samples of random processes where a 

probabilistic description, the underline random process is provided? This process can be 

Gaussian or non-Gaussian, scalar or vector, completely specified or partially specified 

and let us see how to go about doing that, in the next lecture. So, at this point, we will 

conclude this lecture. 


