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In the previous lecture, we studied the question on how to characterize first passage 

times in the non-linear oscillators, which are driven by white noise. 

 (Refer Slide Time: 00:35) 

 

And to summarize what we have done till now, the basic results of Markov process 

theory has applied to dynamical system is displayed here. So, this is the general 

stochastic differential equation with multi-dimensional; this is the drift, this is the 

diffusion terms, and associated with this, we get the so call forward Kolmogorov 

equation or the Fokker Planck Kolmogorov equation - f p k equation.  

As based on this, we can derive the moments, equation governing the moments, that is 

expected value of h of X of t comma t and this equation can be derived. This is equation 

for moments at a single time t, but you can generalize this and get equations for moments 

involving two times t and t naught, and that equation again is another partial differential 



equation. We introduce an intermediate function call nu, which is function of x 1 x 2 t 

comma t naught and that is satisfied by this equation; this again the backward 

Kolmogorov, this is forward Kolmogorov operator. 
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So, along for each of these equations, for the Fokker Planck equations, moment 

equations and this we need to write the appropriate boundary condition. Now, by taking t 

naught as a independent variable, we can derive an equation known as the backward 

Kolmogorov equation, which is useful in the study of first passage times. And we if we 

define a survival reliability function R, which is actually probability distribution, 

probability of first passage time T greater than t minus t naught condition on X of t 

naught is x naught tilde; this function is again satisfied by this partial differential 

equation, based on which, we get a sequence of equations for the nth order moments of 

the first passage time. 

So, M n is T n, where T is the first passage time. So, the Markov process approach 

essentially provides us with shoot of tools, which can be used to characterize stochastic 

response of non-linear dynamical systems. In many situations or in at least in a few 

situation, you can get an exact solution, either for the governing Fokker Planck equation 

or for the moments. In when other situations, more general situations, this forms the 

basis on which we can develop approximate methods for solving the problems. 
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One such approach we were discussing, namely, how to develop models for envelope 

and phase of the response processes, using what are known as stochastic averaging 

principles. So, I briefly outline the averaging concept, as applied to deterministic systems 

in the previous talk. And here, we have a non-linear free vibration, u double dot omega 

naught square u minus epsilon this, and we made a transformation a displayed here, 

where a and beta is the amplitude or the envelope; beta is the phase, there taken to be 

slowly varying functions of time.  

And based on that, this is the exact transformations. we derived the governing 

differential equations for evaluation of a and beta. And then, we replace the right hand 

side by their average over cycle, and while doing that averaging, we treated a and beta as 

constants; and that assumption was based on the fact, that when epsilon is small, the 

change in a and beta over a cycle will be quite small compare to change in trigonometric 

functions like, cos phi, sine phi. So, that helps us to simplify, eliminate this oscillatory 

terms deterministic oscillatory terms from our model for envelope and phase, and we 

may be able to get simpler models for system response. 
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Now, we will consider the question of extending this argument to randomly driven 

systems. So, I consider now, x double dot epsilon square h x comma x dot plus omega 

naught square x as epsilon z of t; this z of t is not a white noise; it is however taken to be 

process is zero mean and auto covariance R z z tau, and it is taken to be broad banded. 

When do you say an excitation is broad banded? It can be specified either in terms of the 

band width of the power spectral density; we saw the band width of the system transfer 

function or in terms of the time constants associated with auto covariance functions and 

impulse response of the system. 
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So, suppose if you say characteristic time constant of excitation is much greater than the 

characteristic time constant of the system, then we can say that it is a broad band process; 

I think it’s much less. Now, time duration over which R z z of tau decays to 10 percent of 

its maximum value, can be taken as the characteristic time constant of excitation. For 

system, it can be taken as, time duration over the impulse response decays over by 90 

percent’s.  

Now, we are taking this parameter epsilon that appears here to be small; and if indeed it 

is 0, and if there is no excitation, we get the solution as a cos phi a omega naught sin phi. 

So, this is the case for no excitation and no damping also. But when there is light 

damping and weak excitations, we stick to the functional form of this solution namely, x 

of t a cos phi and x dot of t is a omega naught sin phi, where capital phi is t omega 

naught plus small phi. For epsilon naught equal to 0, when epsilon is naught equal to 0, 

two things happen; one is system become nonlinearly damped and other is it get driven 

by a broad band excitation. 

So, we still assume that the functional form of this equations remain the same, except 

that the quantities a and phi are now taken to be slowly varying functions of time. So, 

based on this, I will now there is no again… let me emphasis, there is no approximation 

as of now. You can implement this transformation, and get these equations for a dot and 

phi dot. So, z of t is now multiplied by sin phi and cos phi; these are actually quite 



intimidating set of non-linear differential equations. You can see there are trigonometric 

terms and there is 1 by a sitting here, and this a multiplies our random excitation, and so 

on and so for. So, by introducing this transformation, we seem to have made the problem 

more complicated. But if we now bring in the fact that epsilon is small and a and beta are 

slowly varying, then certain simplifications become possible. 
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The averaging here is done in two steps: one is the deterministic averaging, where we 

replace regular oscillatory terms by their time averages, as we did in case of 

deterministic averaging; we also do another component of averaging known as stochastic 

averaging, where we replace randomly fluctuating oscillatory terms by delta correlated 

processes. That means, excitations which are not truly white noise excitations, where 

replacing them by equivalent white noise excitations; what is that equivalents, is what 

this method, the theory behind this method establishes. The first stage follows the 

procedure used in deterministic averaging. The second stage is based on the application 

of what is known as stratonovich khasminiski theorem. 
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So, what this theorem says is, if you have a non-linear system, which is excited by a 

broad band excitation Y of t, and this parameter epsilon is small, this X of t is n cross of 

vector of response processes and Y of t m cross one vector of random excitations; and 

we assume that, mean of this excitation is 0 and Y of t is broad banded. According to the 

stratonovich khasminiski theorem, the above equation can be approximated by a 

stochastic differential equation, where we are now replacing the band limited random 

excitations by equivalents increments of Brownian process, and also, we are simplifying 

the functions f and g by doing certain time averaging. 
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So, that time averaged and stochastically averaged equations are given here; this drift is 

given by this and diffusion co efficient is given in terms of this. So, while carrying out 

this averaging, the quantities a and this f, this quantities X here are treated as constants. 

So, there is this paper I reference in the previous lecture; so, this is a review paper, which 

explains the basics of this method. 

(Refer Slide Time: 10:17) 
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Now, first level of exercise is to make the transformation; these two equations are 

equations for amplitude and phase, in terms of the random excitations, and the non-linear 



dissipation and other terms; these are exact. Now, if you do the averaging, that is the two 

stage averaging, the resulting stochastic differential equation will have this form, da of t 

is some F of a and this is a constant. And now, I get a increment of Brownian motion 

process with an equivalent multiplier. Similarly, the phase equation is govern by this, s d 

this function F of a and G of are given by this equation, which are quite similar to what 

we did it in deterministic averaging. 
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So, you now look at these two equations; you can recognize that, the vector a and phi 

have Markovian vector - Markovin character. We look carefully at equation for a of t, 

there is no phi of t in this; that means, a of t itself is a Markov process, but you look at 

phi of t, there is a here. So, phi of t needs on its own is not Markov, but you look now at 

the vector a and phi together, that is Markovian. So, this is the case in which the response 

vector has a components, which has Markovian property; another components which 

does not have Markovian property, but taken together, they have Markovian property. 

Now, once this simplified equations is set of equations are obtained, I can take two 

routes now. One is to look at only the envelope and write the forward equations, forward 

Kolmogorov equations, backward Kolmogorov equations, the equation for first passage 

times, the moments, first passage times, and so on and so forth. Alternatively, I can 

consider the joint density function between a and phi, and develop the forward equation, 



the backward equation, the moments equations, the generalized punter-ion-wit equation, 

etcetera, for those problems. 

So, that would mean this method of stochastic averaging has now enhanced; our ability 

to study non-linear oscillators, which are now driven not necessarily by white noise, but 

by broad band excitations. So, they method establishes a equivalent Markovian model 

for the system behavior, which is not in reality Markov. 
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So, this is the FPK equation for the joint density of a and phi for this function transition 

PDF. And if you are interested in steady state, dou p by dou t vanishes; if it is admissible 

and I get the reduced equations properly. This you may be able to solve lot more easily 

than this equation. Or you can consider now a of t itself as a scalar Markov random 

process, and write the FPK equation governed by p of a comma t a naught t naught; and 

in steady state, this becomes a ordinary differential equations, because now there are 

only two independent variables t and a. 

So, in steady state, it becomes ordinary differential equation and I can solve for the 

envelope of the response process in steady state. So, this is one of the major 

achievements now; I have got now probability distribution function of the envelope 

process of a non-linear systems, which is driven by broad band excitation. So, our ability 

to model envelopes has now considerably enhanced; this an exact solutions within the 

framework of approximation, that the method of averaging introduce. 
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Now, you look at the two equations in steady state; this is equation for p of a phi a 

naught phi naught, whereas this equation this p is a condition on a naught; this is steady 

state. Now, although I use same notations p, you must understand at this equation is for a 

of t and this is equation is for a and phi. Now, if you now look at a possible solution 

which is in variable separable form, you can verify that, the first of these equation is 

satisfied by p of a divided by 2 phi, where p of a solution of this equation; that would 



mean, the amplitude, the phase is almost characterless here; it is uniformly distributed 0 

into 2 phi. So, one moment you solve this ordinary differential equation, actually this 

ordinary differential equation, because a is the only independent variable, other problem 

is completely solved, because if you substitute this and look for phase being uniformly 

distributed in 0 to 2 phi, you substitute this solution into the first of this equations; this 

equation is satisfied. 

So, therefore, you can also get an approximation to the joint density function between the 

process and its time derivatives plus when velocity, because I have now model for a and 

phi; I can use method of transformation of random variables, and 1 by a will be a 

Jacobean and I can get this. And this also enables us to get the model for the parents 

process and its derivatives. So, again, I have a handle on the response of the non-linear 

system to broad band excitations, I have solved envelope process - phase process; and 

from them, I am now getting the probability density of the parents process, although if I 

directly try to write the, I mean, originally the parent process and its time derivatives do 

not constitute a Markov process. 
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Now, however, transient solution, the transient solution for p of a t conditions on a 

naught t naught can be developed based on a method of variable separation; we will get, 

we will have to solve on the way an Eigen value problem, which leads to Eigen functions 



in terms of hypergeometric functions, and we can like laguerre hermite and that type of 

functions, and we will be able to solve this problem. 
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Now, in the illustration that I have done, I have consider only external excitation. But 

suppose there is a parametric excitation, that two random excitations, zeta of t and s i of 

t; both are broad banded, zero mean, may be dependent, could be independent; actually, 

the method of averaging can be used for this also. Now, in the special case, where system 

is linear; so, what I am taking about, u double dot plus 2 eta omega u dot plus omega 

square u is equal to z of t. Now, I know that by a independent study, that the envelope of 

this process is rarely distributed. If f of t is broad banded, excitation is broad banded, the 

response is narrow banded; and for narrow banded process, the envelopes are rayleigh 

distributor. 

Now, the same result I get through averaging; I indeed get a rayleigh density function for 

this system, and the phase is uniformly distributed between 0 to 2 phi, and this sigma 

square is equivalent strength of the white noise; there is no white noise in this problem, 

because z of t is the band limited excitation. But the method of averaging replaces the 

excitation - band limited excitation - by an equivalent you know white noise excitation. 

So, the strength of that white noise is provided in the calculations of this method. Now, 

you can compare this with the envelope and peak distribution obtained earlier, by using 

you know convolution integral approach, and so on and so forth. 
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Now, what happens if stiffness is also non-linear? I have been talking about non-linear 

damping; stiffness is non-linear and of course, I also added for variety parameter 

excitation term also, the definition of envelope now will not be in terms of trigonometric 

function. You saw this, that the envelope V of t can be defined in terms of the energy, 

that is kinetic energy plus the potential energy in the system, and we can develop a 

Markov model for this envelope. I am not going into get into details, I already given a 

reference. I am trying to provide certain key ideas, which would help you to read the 

relevant literature. 
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So, in summary, what we can say is, the method of stochastic averaging enables us to 

study envelope and phase processes associated with weakly non-linear system response 

to broad band excitations. The method also provides a framework to study first passage 

problems for the response envelope. The method is best suited to the study of single 

degree freedom systems. It leads to many interesting results, which provide very useful 

inside into non-linear system behavior. Although there applicable to small scale systems, 

the insides that we gain from this are quite valuable in understanding behavior of larger 

systems. with this, I conclude the discussion on the use of Markov process theory in the 

evaluation analysis. 
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(Refer Slide Time: 20:46) 

. 

We now move on to a new topic, which is Monte Carlo simulation methods in stochastic 

structural dynamics. So, as the name suggests, it essentially a numerical approach to a 

random evaluation studies. So, what it does? So, imagine the equilibrium equation of a 

dynamical system of mx double dot plus cx dot plus g of x comma x dot is f of t; this f of 

t let it be a random excitation is a random process. Since excitation is the random 



process, the response process is also a random process. So, we have f of t going to the 

system and producing x of t; if f of t is a random process, x of t is also the random 

process. What we have being doing till now, is to characterize x of t in terms of the 

properties of f of t, in terms of for example, if the system is linear, if I know the power 

spectral density function of excitation, can I get the power spectral density function of 

the response in steady state? Or if I know the covariance function of f of t, auto 

covariance of f of t, can I get an equation which governs auto covariance of x of t? 

So, here, I will be basically using the governing equation of motion; the transmission of 

uncertainty in f of t to the response is essentially through the mechanics of the problem. 

Now, in Markov vector approach, what we did; we assume excitation to be white in 

nature. So, we were aiming to get the probability density functions, first passage times, 

and its probability density function, moments, etcetera, directly from the governing 

equation and find that they have Markov properties. 

Now, in Monte Carlo simulation approach, we take an alternative route. So, here, what 

we do is, we treat excitation is the random process, that would mean, this random 

process is actually ensemble of time histories. 

(Refer Slide Time: 23:25) 
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So, this continues; all though I shown if you here, this is an infinite ensemble. For any 

single realization of this ensemble, suppose if I take this realization, I can solve this 

equation numerically and get the sample of the response; that means, I am essentially 



carrying out a deterministic analysis, as for as the realization of excitation is concerned. I 

take a realization of excitation, solve this equation using standard methods of solving 

ordinary differential equation - numerical methods, get the time history of the response. I 

repeat that for every realization of f of t; for corresponding to these ensembles of inputs, 

I get an ensemble of response time histories. From this, what I do? So, one of the task 

that I should do is, I should be able to produce an ensemble of inputs, obeying prescribed 

models for f of t; see, f of t is a random process, means, it is completely specified by its n 

th order joint density function. 

When I say that I have an ensemble of inputs, which corresponds to realization f of t, 

means, that I am able to produce time histories of f of t, which obey the prescribed 

probabilistic model for f of t. So, if f of t is say a gaussian random process with a 

specified power spectral density function, zero mean stationary random process with the 

specified power spectral density function, the problem would be, how do you simulate 

samples of such a random process? That would mean, if I were to simulate these 

ensemble of time histories, and on these ensemble of time histories, if I were to do 

statistical processing of these time histories and estimate the power spectral density 

function. I should get back the target power spectral density function, which I had at the 

outside, fine; that mean that is one of the capabilities that we have to develop. How to 

generate samples of random quantities, which obey the prescribed probabilistic loss; that 

is one of the important components of Monte Carlo simulation study and this has to be 

done digitally on a computer. 

Then, we simulate the system dynamics through the solution of the system behavior, 

which could itself be a, for example, a finite element model. This could be a wind on a 

cooling tower, and I have a finite element model made up of beams plates shells and soil, 

and more media, etcetera. And I can do a sample calculation and get the response of the 

systematic given location. So, at the end of the this exercise, I get ensemble of outputs, 

but I am interested in statistical properties of x of t, I am interested in knowing what is 

power spectral density function of x of t, what is first passage time associated with x of t, 

what is the probability distribution of first passage time associated with x of t; that would 

mean, after getting this ensemble, I have to perform one more exercise, where I have to 

process the ensemble of outputs using statistical tools and arrive at probabilistic model 



for x of t. Based on these probabilistic models, I will able to take a decision on the 

system behavior, right. 

So, task one is to simulate samples of f of t obeying prescribed probabilistic loss. How 

do you test that you actually succeeded in doing? We have to use methods of statistics. 

You simulate samples of time histories and get ensemble of response time histories, and 

you have to get a probabilistic model for this. How do you do? You  have to do statistical 

processing of this ensemble. So, the subject of statistics underlies forms one of the main 

components of Monte Carlo simulation studies. So, we will split this discussion Monte 

Carlo simulations into four aspects: one is how to simulate realizations of random 

quantities, which obey prescribed probabilistic loss; second, after having simulated those 

realizations, how do you test that you are succeeded in doing so; Third, corresponding to 

ensemble of excitations and system parameters, how do you solve the governing 

equation for the system behavior and get an ensemble of time histories of the response; if 

this system behavior is characterized in terms of say a set of stochastic differential 

equations, how do numerically simulate samples of response of a system which is 

governed by an SDE. 
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So, that is third aspect that we need to investigate. The fourth aspect is of course, after 

getting the ensemble of response, how do we get the probabilistic models for the 

response process? So, I will begin this discussion by considering questions on statistics. 



Before that, we could also look at the problem of simulation from a slightly different 

perspective. Consider the problem of evaluation of a definite integral i a to b f of x d x; 

this I can rewrite as, I will multiply divided by b minus a and I will write it as b minus a 

a to b f of x 1 by b minus a dx. Now, if you interpret 1 by, what is this function? this is a, 

this is b and this height is 1 by b minus a. So, what is this area? This is 1; this function 

between a and b represents the probability density function of a random variable, which 

is uniformly distributed between a and b. 
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So, if that probability density function I write it as p X of x dx. Then, this integral can be 

interpreted as expected value of f of x with respect to this density function; that is, I is b 

minus a into expected value of this and this, this expectation is with respect to p X of x, 

which is uniformly distributed in a to b. Now, this expectation is nothing but an average 

and that average can be return as, 1 by N i equal to 1 to N f of X I; that would mean an 

integral which is a deterministic quantity now is being evaluated as an expectation of a 

random variable which is f of X, where X is uniformly distributed in between a and b. 
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Now, let me just to illustrate, suppose I am interested in evaluating 0 to 1 x square dx, I 

know the answer is 1 by 3. Now, for a moment, let us assume that, I have a method to 

simulate samples of x of t on a computer x, our computer such that, p X of x is uniformly 

distributed in a and b, that I have to still demonstrate, but let us assume that capability 

exist with us. So, what I was shown here? There red line is the exact solution; this value 

of the integral on y axis and these samples that we use in evaluating this expectation 

through simulation is shown on x axis. So, as you see the smaller samples, as a 

fluctuation and samples become large 1000 samples, we are hovering very closely 

around the exact value which is 1 by 3. 
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Now, if I repeat this exercise with another set of a samples, I get a similar curve; not 

exactly the same curve, because I am using different random numbers. Thus, they also 

show a similar behavior. Now, if I take 500 samples and do 500 runs, in each run, I will 

take 500 different samples, and I perform the evaluation of I and plot it as a function of 

different runs; there are 500 runs, and each runs, there are 500 samples, I get this kind of 

trajectory; that would mean, integrals can be described in probabilistic terms and we may 

have a way of evaluating integrals through Monte Carlo simulations; indeed one of the 

major application of Monte Carlo simulations lies in evaluation of multi fold integrals. 

And since reliability is essentially in some sense evaluation of multi-dimensional 

integrals, you can easily see that Monte Carlo simulations have important role to play in 

these exercises. 
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So, here, what I have shown is, I would treated this, I that have got here as a random 

variable and plotted its probability distribution function. It turns out that, the blue line is 

the normal probability distribution function and red line is the empirical probability 

distribution function of a realizations of I; and it turns out that the nearly Gaussian. 

These are empirical observations, I have to put all these matters on a proper footing. 
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So, we will begin that discussion now. So, I will again re-capsulate what are the major 

ingredients of Monte Carlo simulation. First, methods for generating samples of 



excitations and system parameters compatible with the prescribed probabilistic models. 

Next, to test statistically if the generated samples indeed obey the prescribed 

probabilistic laws. How do you know what you are doing is right? So, that have to do. 

Then, third one is a computational model for the system dynamics, which accepts 

samples of inputs and system parameters produced in the previous steps and generates an 

ensemble of response quantities. This as its already set could be a finite element model 

or a numerical model for solution of a stochastic differential equation; it could be any 

model that is based on the physical laws, that govern the system behavior. The last step 

is a statistical processing of ensemble of response time histories and inferences on 

system behavior, where based on which we make decisions. So, there are two places, that 

is, namely this step and this step, where we need to understand how to process data. So, 

we will begin with a review of elements of statistical methods, just to place all the terms 

and techniques in a unified framework. 
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So, the word statistics can be used in different senses; it can be used in plural, to mean 

data like data on birth, death and marriage so called vital statistics or it is a subject - 

science of statistics; it is used in singular, but what we do is, we use statistic in singular 

to denote a random variable statistics is a set of random variables. 
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So, it is in this sense that we are going to use this word. Statistics is a subject is a 

singular, but this form a, it is a set of random variables; so, what it mean? What does that 

mean? We will have to build a set of terminologies, vocabulary to describe these issues. 

So, I will briefly introduce them; the word average, we consider average is single 

number that describes the data. So, the data is a collection of numbers, which describes 

some property of certain physical phenomena; for example, if we have a material, we 

will describe it by its density, viscosity, stiffness, strength, etcetera. So, if we have a 

data, what you do? You talk about its mean, geometric mean, arithmetic mode, median, 

percentile, minimum, maximum, variance, skewness, kurtosis, cumulative distribution, 

correlation, etcetera. So, these are descriptors of data, which conveys certain specific 

meaning; for example, if I say material as viscosity of certain units, certain number, it 

means something in the same sense, if I say skewness of this data is so much, it should 

convert some specific meaning. 
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We use the term population; suppose, we consider a campus with 5000 persons, we can 

measure all their heights, and I get 5000 numbers: X 1, X 2, X 5000; I can measure the 

weight, I get Y 1, Y 2, Y 1000; I can look at the income, I get another set of Y 5000 

numbers. I can look if they wear specs or not, I get a sequence of yes or no 5000; gender: 

male, female, 5000 number. So, in study of statistics, each of this is a population; this a 

population of heights; this a population of weights; this a population of gender, so on and 

so forth. So, population is synonym somewhat analogues to the sample space, that we 



used in probability and defining probability. So, it is a collection of all possible 

observations on a particular characteristic with respect to the problem on hand. This is 

starting point in statistics; it analogues to sample space in probability. 
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Any collection of measurements capable of being described by a random variable 

constitutes a population. This can be taken as a working description of a population; that 

means, the outcomes that we talk about should be… the numbers we talk about, we 

should be able to constitutes them as outcome of a random experiment and hence a 

random variable; that should be born in mind. 

A sample in our studies, it is not practically to studied all members of the population; 

therefore, we talk about sample. Sample is a part of the population which we want to 

study and draw conclusions about property of population. We want to study average 

income of people in this country; one approaches to ask everyone get that number or 

sample take 10000 samples, a sample of 10000 persons and get that an estimate for the 

average, and see, how good you are in your estimate. It is not enough to say that sample 

is a subset of population; the subset needs to be representative. The word sampling 

denotes the procedure of drawing samples. And the word sampling design describes a 

development of a sampling procedures to meet a specific requirement. 
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So, we use these terms sample sampling, sample design, etcetera. So, we need to have 

some working definitions or descriptions of these words. Now, the word random sample, 

we can give a fairly rigorous definition for that. So, let X be a random variable with 

probability density function p x of x, and we consider an iid sequence X 1, X 2, X 3, X n, 

with a common probability density function p x of x; this set of random variables X 1, X 

I, i running from 1 to n is called a random sample of size n of x. 
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Now, if you now consider a transformation S, on these n random variables S of X 1, X 2, 

X n, that is the function of X 1, X 2, X n; this function is called statistic. This is a random 

variable, because it is a transformation on X 1, X 2, X 3, X n. We will write the 

probability density function of X in the form p x of x colon theta, where theta are 

parameters of the probability density function; for example, in a normal random variable, 

we have m and sigma; in poisson, we have lambda, so on and so forth. The joint 

probability density function of X I, i running from 1 to n is of the form, this is X i’s are 

all independent; it is i running from 1 to n p x of x i theta. 
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Now, this states X i can be interpreted as values of observed data, taken from the random 

sample; that means, it is a realization of these n random variables, is actually what can be 

interpreted as a measurement that you make. An estimator of theta is a statistics S, theta 

is a parameter; so, essentially, the estimator is a random variable, which is a function of 

your random sample, and that we denote as theta S of X 1 comma X 2 comma X n; so, I 

am describing the word estimator.  

For a particular set of observations, say, X 1 is small x 1, lower case x 2, lower, etcetera, 

the value of this estimator is called an estimate of theta and is denoted by theta cap. So, 

estimator therefore is a random variable, but estimate is realization of the estimator; that 

means, it is a realization of this random variable. So, we will be using these terms, so you 

need to have some clarity on what exactly they mean. Just to fix the idea, we will 

consider a hypothetical problem, where there is a population with only 4 numbers, say, 1, 

2, 3, 4. 

Now, if you now take samples, suppose I draw only one sample, you are allowed to take 

only one sample and tell me what is average of this; what is average of this? This is 2.5; 

this is 1 plus 1 plus 3 plus 4 divided by 4 is 2.5. If you draw one sample, if you get one, 

you will report one as an answer; if you where to draw two report, two as an answer, so 

on and so forth. Now, if you are allowed to take two samples, how many such samples 

we can draw? 1 2, 1 3, 1 4, 2 3, 2 4, 3 4; depending on which of these samples are 

actually drawn, you get the estimate for mean as 1.5, 2, 2.5, 2.5, 3, 3.5, etcetera, right. 

So, the estimate that we are getting is therefore random variable and the probability 

distribution of that is known as sampling distribution; that is, first term is sampling 

distribution. Now, if N equal to 3, you can now the number of ways in which sample 

reduces, you can draw 1 2 3, 1 2 4, 2 3 4, 1 3 4, and we get these numbers as a answers; 

of course, if you take N equal to 4, there is only one sample that you can draw and you 

get an answer 2.5; and we will now look at the last two entries in these tables. 

Now, look at what happens if I take two samples, I can draw samples in 1, 2, 3, 4, 5, 6 

number of x and I get these answers; these are all estimator answer to the question that 

we are asking; 3.5 as good as 1.5, which is as good as 2.5, because you are drawn two 

samples. Now, if you take average of this, I get 2.5. And you look at its standard 

deviation, if you are taking only one sample, the average is still 2.5, but the standard 



deviation will be 1.29. I will explain how this standard deviation is computed in due 

course, but you can assume that it is based on these numbers. Here, the sample size has 

increased and standard deviation has reduced; the samples are not become 3, the mean 

still remains to be 2.5, but the standard deviation has becomes 0.43. In the last case, the 

sample size reaches its possible maximum value, and mean is 2.5 and standard deviation 

is 0. 
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So, what is happening here? We will summarize now; if you say capital T is a estimator 1 

by n i equal to 1 to X I, the probability distribution function of T is known as sampling 

distribution of T. The fact that the T is random variable is very clear, because X 1, X 2, X 

3, X n are an random variables. A realization of T is known as an estimator; this is an 

estimator; estimator is a random variable; estimate is a realization. The estimator is said 

to be unbiased, if the expected value of this random variable T is actually equal to the 

population mean. Is it true here? Yes. As we saw here, if you take the mean of this 

random variable, I am getting 2.5, which is indeed the population mean which is not 

known to me. We say that, such an estimator is unbiased; an estimator is unbiased, if its 

expected value is exactly equal to the population quantity that you are trying to estimate. 
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Now, one more thing that we saw was, as n was increasing, a sample size was increasing, 

the standard deviation of the estimator was reducing. So, the estimator in that case is said 

to be consistent. So, the estimator is said to be consistent, if as limit n tending to infinity 

variance of T goes to 0. So, that means, you draw more samples, you are more sure of 

your answer; that dispersion in your answer goes on reducing. Estimation is a finding a 

realization of T as an approximation to a population parameter; that would mean, what it 

involves, this the population, suppose with N equal to 2, I take the number say 2 4 and 

compute this 2 plus 4 divided by 2 which is 3 as an as the answer, for this unknown 2.5 

which is not known to me; I take 3 as an approximation to 2.5. This process of drawing a 

sample and computing, this is known as estimation. 
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Now, let us consider the problem of estimation of mean. So, let X be a random variable 

with probability distribution function P X of x, probability density function lower case P 

X of x, a mean mu and standard deviation sigma. We will form a sequence of identical, 

independent and identically distributed random variables X I, i running from 1 to n with 

common PDF P X of x which is given here, in the specification of X. What this means is, 

X I is independent of X j, for all i not equal to j in 1 to n. Since X i’s are all identical, 

expected value of X i is mu, variance of X i is sigma square and p X i of p X is p X of x, 

for all i 1 to n, because there are iid’s. 
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Now, let theta, i running from 1 to n, a i x i be an estimator of mu; mu is a property of the 

population which is not known; theta is an estimator. Now, estimator is said to be 

unbiased, if expected value of theta is equal to mu. When that will happen? You consider 

expected value of theta; this is expected value of i running from 1 to n a i X I, but 

expected value of X i is mu; therefore, I get this mu i equal to 1 to n. If this has to be 

equal to mu, it means the summation of this a i must be equal to 1; that means, if you 

select an estimator, where the weights a i added to 1, then the resulting estimator is 

unbiased. Unbiased is a desirable property, we can start with that notion, but this is not 

unique; there are so many ways in which I can select a I, so that i running from 1 to n, a i 

is equal to one. Now, what I will do now is, I will consider variance of theta; variance of 

theta is variance of this summation, and since X i is are all independent, variance is a i X 

i minus mu summed over i to 1 square and we can show that variance indeed this. 

Now, what we do is, to make the unbiased estimator unique, we will select a i show that 

it minimizes this variance. Since theta is being used as an approximation to the 

population description mu, say, mean, population mean is not random, it is a 

deterministic quantity. So, you are approximating a deterministic quantity via random 

variable. So, the best that you can do is to minimize the variance of random variable; that 

is the logic beyond minimizing the variance here. So, variance of theta is given this; I 

want to minimize variance of theta given by this; subject to the constraint that I want an 



unbiased estimator. So, what we do? We form the langrangian sigma square, i equal to 1 

to n a i square plus lambda; this is the constraint equation, i equal to 1 to n a i minus 1. 
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Now, for optimality, dau l by dau a i must be equal to 0 for i equal to 1 and dau l by dau 

lambda must be equal to 0, and that basically that condition optimality of L with respect 

to lambda essentially gives our constraint equation; that is the idea behind doing 

introducing langrangian multiplier. So, we go through these calculations, dou l by dou a 

k equal to 0, would mean 2 sigma square a k plus lambda equal to 0, for k running from 

1 to n, and from this, we get a k to be minus lambda by 2 sigma square; dou lambda by 

dou lambda dou l by dou lambda equal to 0, I can recover the constraint equation. And in 

this if I put this a k as minus lambda by 2 sigma square, I can eliminate, that an I can get 

lambda in terms of sigma square and n as shown here, and I get a k to be 1 by n; that 

means, all a 1, a 2, a 3, a n, there are all 1 by n. If n is a sample size, all a k’s are one by 

n; therefore, the optimal corresponding to this optimal values, the minimum variance that 

I get is sigma square by n. 
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So, to summarize, theta is equal to 1 by n, a i ’s are all 1 by n, they come out of the 

summation; i equal to 1 to X i is an unbiased estimator of mu with minimum variance, 

and the lowest variance is sigma square by n. So, whenever we are given a set of 

numbers and ask to find an average, this is what we intuitively do, and that actually has 

this desirable properties that that procedure leads to an estimate, which is estimator 

which is unbiased and has its smallest variance.  

Now, another approach to parameter estimation is what is known as maximum likelihood 

estimation. Let X be a random variable with pdf p X x colon theta, and theta is a vector 

of parameters of the distribution; for example, if X is normal, I have sigma and mu as 

parameters. For the moment, let us assume that theta is known, and let X i be an idd 

sequence of random variables with the common pdf given by p X x colon theta; this theta 

is given now. 
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Now, let us consider the joint density function of x 1, x 2, x n and that is given by, since 

X i ’s are all independent, it is p X 1 evaluated x 1, p X 2 evaluated x 2, so on, and so 

forth. And using the product notation, I write it as product i equal to 1 to n p X i x i colon 

theta. Now, just for a illustration, let x be exponentially distributed, so that p X of x colon 

lambda theta is only one. Now, this is lambda, I get lambda exponential minus lambda x, 

this is the probability - common probability density function - and this product will be 

lambda to the power of n exponential minus lambda, i running from 1 to x i, where x i’s 

are all greater than 0, and i raise from 1 to n; here, I have already said that theta is taken 

to be known. 
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What is this product? Product of density functions, suppose I multiply this by dx i, this 

product is nothing but the probability of X 1 lying between X 1 plus dx 1 intersection X 

2 lying between X 2 and X 2 dx 2, so on and so forth, right. Now, let us now consider the 

case, where theta is unknown and let us assume that we have observed a sample denoted 

by lower case x 1, x 2, x 3, x n. Now, what I do? I interpret this product as the likelihood 

of making the observation x i, because of this property, that this product is indeed the 

probability. So, the word likelihood is being used in the sense of a probability. 
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Now, theta is unknown; so, it is a function of observed samples and the unknown 

parameter theta. Now, for what value of theta, this likelihood is maximum is a way to 

find theta now. So, what we do is, we introduce the definition; the maximum likelihood 

estimator of theta is the value of theta, for which this L theta condition a x 1, x 2, x n is 

the maximum, and this L is known as a likelihood function, which is the product of the 

probability density function evaluated at the sample points - observed sample points. Just 

to give an example, let X be a exponential random variable and suppose I have made 

observations t 1, t 2, t n, so the L function will be the likelihood function will be lambda 

to the power of n exponential minus lambda, i running from 1 to n t i. We have to 

maximize this; so, we take logarithm; so, this is known as log likelihood function; so, 

this we get as this. 
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Now, let lambda had maximize this function; so, that means, do by dou lambda L n of 

this is 0. And if I do now the calculation, first term gives n by lambda, the other one 

gives summation t I; and from this, I get 1 by lambda as 1 by n, i running from 1 to n t i. 

Now, quickly recall, what was an expected value of X? This is consistent with our 

definition of expected value of X; that means, if you observed t 1 t 2 through t n and find 

the unbiased estimator with minimum variance, you will get the same formula for the 

expected value of X. So, this is consistent with that. How about normal random variable? 

It has two parameters: mu and sigma. So, the likelihood function is product of these 

density functions evaluated at these observed points t 1, t 2, t 3, t n and this is the 

likelihood function. And if I take logarithm, it becomes, I mean, it simplifies the matter a 

bit and our parameters of interest are buried here, and here and here. So, I have to 

minimize this maximize this with respect to mu and sigma. 
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So, if I do that, I use dou by dou mu equal to 0, dou by dou sigma of this L n function is 

0; and I get this as the maximum likelihood estimator for the mean, maximum likelihood 

estimator for standard deviation. So, these are yet another approach for finding 

parameters of a probability density function, based on observations. Now, I have 

mentioned that estimator is the random variable; to be able to assess how good is our 

estimation, we should characterize the probability distribution of that estimator. 



So, just to give an introduction to that, if you consider the estimator theta as 1 by n i 

equal to 1 to n X I; theta as we know is an unbiased estimator of mu with variance as 

this. Now, if X is Gaussian, X i will also be Gaussian; and you are adding gaussian 

random numbers, so theta will be Gaussian. So, sampling distribution for theta as per this 

description is gaussian with mean as mu and variance as sigma square by n. If X is not 

gaussian by using central limit theorem for large samples n being large, we can still make 

a have postulation that, sampling distribution for theta is still Gaussian. 

Now, based on our knowledge of probability distribution of theta, what can we say about 

the accuracy of estimation? This is a question we will consider in the next lecture; that is, 

how to get the sampling distribution for different estimators, say, estimators for mean, 

estimators for variance, estimator for correlation function, estimator for power spectral 

density, so on and so forth? That is one exercise. After having got that, how do you use 

that information in assessing the accuracy of estimates? We will consider these questions 

in the next lecture; we will conclude this lecture at this stage. 

 

 

 

 


