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We have been discussing in the previous lecture, a property of random process is known 

as Markov property and this property would enable us to analyze a randomly vibrating 

system using a different kind of route, so that is we are developing. So, we will quickly 

recall what we discussed in the previous lecture. So, Markov property refers to a 

property displayed by conditional probability distribution functions of a random process. 

When we say process is Markov, it does not refer to the nature of probability distribution 

function; for example, when I say a process Gaussian what I mean, is that, the 

probability density function has a Gaussian character, whereas Markov property is 

something to do with memory, not so much about the particular form of probability 

distribution function. 

So, the definition of a Markov process for a scalar random process X of t said to possess 

the Markov property, if the conditional probability distribution function X of t n less than 



or equal to X n, that is conditioned on X of t n minus 1 less than equal to X n minus 1, so 

on and so forth, X of t 1 less than or equal to x 1 is the probability distribution of X of t n 

less than or equal to X n, conditioned only on X of t n minus 1 less than or equal to X n 

minus 1, for any choice of a n, for any choice of increasing sequence of t 1, t 2, t 3, t n. 
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A Markov process with a continuous state and continuous parameter is known as a 

diffusion process. If the Markov process has discrete parameter, then we call it as 

Markov chain. Mathematically, it is easier to deal with Markov chain, but however in 

vibration problems we need to deal with the Markov process, that is the diffusion 

processes and diffusion processes have several mathematical pathologies and we need to 

take care of some of that, when we use these tools. 
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So, we consider few examples, just to fix the idea; let theta i, i equal to 1 to n be an 

sequence of identical independently distributed random variables and I define S n as sum 

of this theta i from i equal to 1 to n, I can write the summation from i equal to 1 to n 

minus 1 and write theta n separately and I can, therefore, write S n as theta n plus S n 

minus 1. 

So, from this we can see that S n depends on S n minus 1 and theta n is a sequence of 

independent random variables; therefore, the probability density function of S n 

conditioned on S n minus 1 is not a function of the observed states S n minus 2 equal to s 

2, so on and so forth S 1 equal to s 1, that is S n is Markov. Also, in this case, probability 

density function of S n conditioned on s S n minus 1 u is actually probability density 

function of theta n evaluated at s minus n; so, this is by simple rules of transformation of 

random variables, so on this equation. 
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Now, when dealing with Markov processes, we come across what are known as 

absorbing boundaries and reflecting boundaries, so we could explain what these are 

through some simple examples. So, we will consider now, S n is equal to S n minus 1 

plus theta n, we take that, this represents the model for a simple random walk. 

Now, first example that I would like to consider is an example of an insurance company 

which starts business, with an initial capital of X naught at time t equal to 0. Let Y 1, Y 

2, Y n be the premiums received at t 1, t 2, t n; this t 1, t 2 may be days or weeks or 

months whatever. Then W 1, W 2, W n are the claims, paid at t 1, t 2, t n, so they capital 

at time n is given by initial capital plus Y 1 minus W 1 plus Y 2 minus W 2 and so on 

and so forth. 

So, at any n if X n becomes negative, that means, capital becomes negative, the company 

is ruined and it can no longer perform its task and therefore, we call X n equal to 0 as an 

absorbing barrier. So, that means, random Markov terminates moment, that state is the 

observing barrier is reached; so, this is a process with one absorbing barrier X n equal to 

0. 
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Now, we will consider another example, where 2 gamblers A and B with capitals a and b 

play a game n number of times. The game ends, when a wins all the capital b from B or a 

loses all his capital a to B, because gambling cannot continue because one of the person 

has no longer any capital left with him. So, if X n is capital gain of A, at the end of nth 

game, then X equal to minus a and X equal to b are the absorbing barriers; here, he loses 

all is capital, here gains all the capital from player b; so, this is a random walk with two 

absorbing barriers. 

Later on we will see, when we discuss first patches failures, the barriers can be thought 

of as absorbing barriers; suppose, X of t is the stress time history and if X of t crosses a 

plus sigma y or minus sigma y, suppose if we say, that is failure for us, then we can think 

that processes having to absorbing barriers. 
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Another example, daily water level in a dam; so, let b be the capacity of dam in some 

cubic meters or so, then X n is volume of water in the dam on the n th day; let Y n be the 

inflow on n th day and if X n here, we can say that X n executes a random walk in the 

interval 0 to b, either the dams becomes empty or dam is full; if it is empty, it has to wait 

for inflow; if it is full, there will be overflow, whatever is excess overflow on that, I 

mean, x is water, that gets stored in the dam gets overflow. 

If dam becomes empty, it does not mean that the random walk terminates, it waits for the 

fresh input. Similarly, if dam becomes full, it waits for the input to stop, so that water 

level reduces; so, these boundaries 0 and b, we call them as reflecting barriers. So, in 

contrast with absorbing barriers, if the, this state is reached, a reflecting barrier is reached 

the random walk does not terminate, it can still continue. 
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So, these types of questions that we would have ask in this specific context; we can 

generalize it to problems in structural mechanics in due course, for example, for the 

problem of insurance company what is the probability of ruin of the insurance company 

given its initial capital, that is time for ruin. 

Then, in the problem of two gamblers what is the probability of ruin of A and B? Then, 

in the case of dam filling, what is the long term equilibrium probability of water level in 

the dam or what is the probability distribution function of empty periods and nonempty 

periods? So, these are type of questions that we can answer using tools of Markov 

process theory. So, these questions have their counter parts in the contextual structural 

reliability and that we have to slowly appreciate, as we go along. 
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Now, some more examples to appreciate what is meant by the Markov of property; now, 

first example is, verify if an iid sequence of random variables form a Markov process. 

So, that is we need to verify probability density function of x n conditioned on x n minus 

1 x n minus to x 1, is it this or not, this is, if this statement true or not, indeed it is so, 

because x i’s are iid’s and in fact, it is more than that probability density function of x n, 

condition on x n minus n is simply p of x n, because they are independent sequence; so, 

we can say that, this process is Markov. 

Now, let us consider another random process X of t is A plus B t, where A and B are iid 

random, variables is X of t Markov, I leave this as an exercise for you to show that, it is 

not Markov. 

Now, an extension of this problem, let us consider A, B, C, D to be four random 

variables, consider this vector X of t, Y of t, now this can be written as suppose X of t is 

A plus B t and Y of t is C plus D t, question is under what conditions on A, B, C, D will 

this vector X of t Y of t be Markov? So, this again is an exercise that would help you to 

understand the Markov n properties. 
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We briefly talked about the complete specification of a Markov process; so, we start with 

first order distribution function, so probability distribution at t equal to t 1 is probability 

of X of t 1 less than or equal to x 1. Now, a 2 time instants t 1 and t 2, the probability X 

of t 2, x 1, x 2: t 1, t 2 would be probability of X of t 2 less than or equal to x 2 

intersection X of t 1 less than or equal to x 1 that joint probability t is actually X of t 2 

less than or equal to conditioned on X of t 1 less than or equal to x 1 into probability of X 

of t 1 less than or equal to x 1. 

So, this is known, therefore for complete specification I need this also. Suppose, if I take 

three time instants t 1, t 2, t 3, then I can write the joint density function in terms of a 

sequence of conditional probability distribution functions, first is X of t 3 less than or 

equal to x 3 conditioned on X of t 2 less than or equal to x 2 intersection X of t 1 less 

than or equal to x 1 into X of t 2 less than or equal to x 2, conditioned on X of t 1 less 

than or equal to x 1 and into probability of X of t 1 less than or equal to x 1, but the since 

the process is Markov, the first of this terms X of t 3 less than or equal to x 3 is 

independent of X of t 1 less than or equal to x 1, so I simply write this as this and this is 

multiplied by the next conditional probability distribution and the first order probability 

distribution. 

So, this I can write it as product of probability density function, probability of X of t nu 

less than equal to x nu conditioned on X of t nu minus 1 less than or equal to x of nu 



minus 1 into the first order probability distribution function at t equal to t 1, this nu takes 

values from 2 to 3. If you now consider n times instants, we can show that using a 

similar logic, this is equal to product of n transitional probability distribution functions 

into the first order probability distribution function at t equal t 1. 
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So, the complete specification of a Markov process, therefore, is in terms of the 

transitional probability distribution function and the first order probability distribution 

function, for all n and for all choices of t nu, nu running from 1 to n or alternate to this 

would be, to specify the second order joint probability distribution function for all n and 

for all choices of nu, running from 1 to n; if you know the second one, you can easily 

deduce the first one and if you know the first one, that is if you know this transition 

density function probability distribution function and this probability distribution 

function, first order probability distribution function, you can deduce the second order 

probability distribution function, so both are equivalent. 
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So, these joint densities function as I said, we are writing it as product of this transitional 

probability distribution function. So, this transitional probability distribution function, 

we call it as TPDF, I use upper case, let us TPDF following the convention that I am 

doing; for distribution functions I am using upper case letters and for density functions, I 

am using lower case letters. 

Now, this transitional probability distribution function represents the evolution 

mechanism of a Markov process. So, you start with first order probability distribution 

function at t equal to t 1 and go on multiplying this TPDF ‘s to get the joint densities at 

the time instances that you want; so, this is the evolution mechanism. 
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Now, just to give a verbal description, we can consider probability distribution function t 

n plus 1 t n and t n minus 1, suppose we interpret n plus 1 as tomorrow and n as today, n 

minus 1 as yesterday, what Markov properties say is, tomorrows happing depend on 

what is happening today and not on what happened yesterday, that mean, it has one step 

memory, if time is measured in units of days, this is the Markov property. 

(Refer Slide Time: 14:26) 

 

So, you should recall that for linear dynamical system, future evolution depends upon 

initial conditions and not how initial conditions have been arrived at. So, what that 



means, if you consider now dy by dt, a deterministic ordinary differential equation, a 

vector differential equation dy by dt is h of y (t, t), with some initial condition at t equal 

to 0 provided. Now, if you take two time instants t 2 greater than t 1 y of t 2, if we denote 

that solution as q of t 2 y (t 1, t 1), this will be the nature of the solution, that means, y of 

t 2 depends on y of t 1 and t 1 and of course t 2 and not on how y of t 1 has been arrived 

at. 

So, that is solution at d two depends on y of t 1 and not on y of tau, for tau running from 

0 to t 1. So, Markov property can be viewed as the stochastic analog of the above 

property of ordinary differential equations, in the deterministic, in the contrast of 

deterministic systems. 
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Now, we have defined the transitional probability distribution function, I can define the 

associated probability density function, by differentiating the probability distribution 

function; this is straight forward definition. So, lower case p of x nu; t nu, conditioned on 

x nu minus 1; t nu minus 1, is the partial derivative of the TPDF probability of X of t nu 

less than or equal to x nu, conditioned on X of t nu minus 1 is equal to x of nu minus 1. 

So, the n th order probability density function, you can see through this logic outlined 

here, we start with the n th order joint density function and write it as a sequence of 

conditional property density functions and use the Markov property and we can show 

that the n th order probability density function can be express in terms of the first order 



probability density function at t equal to t 1 and product of t is TPDF at t nu, t 2, t 3, t 4, t 

5, up to t n; so, this is quite similar to what happened with probability distribution 

function. So, again we can see that complete specification of Markov process, can now, 

in terms of first order probability density function and the transitional probability density 

function. 
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So, that is what Markov process is also completely specified, in terms of transitional 

probability density function and the first order probability density function, for all n, for 

all choices of t n; this is very important, that it should be true for all n and all choices of t 

1 and t 2, t 3, t n; since the transitional probability density function and first order density 

function can also be derived from a second order probability density function; the second 

order probability density function for all n and for all choices of t 1, t 2, t 3, t n is also a 

complete specification of Markov process. 

So, we can again emphasis, the multidimensional probability density function which is 

needed for complete specification of a random process, is obtain in terms of the initial 

probability density function and product of transitional probability density functions 

which represents the transitional mechanism. 
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Now, if a process is Markov, the transition probability density function needs to satisfy 

certain internal consistency conditions. To illustrate that, we consider three time instant t 

equal to t 1, t equal to t 2 and t equal to t 2, so t 1, tau 1, t 2, so that tau is greater than t 1 

and t 2 is greater than tau. 

Now, we consider the joint density function between t equal to t 1, t equal to t 2, that is, x 

2, t 2; x 1, t 1, this can be written in terms of probability density of x 2, t 2, condition on 

x 1, t 1 into first order density function. This can also be viewed as the marginal density 

function of the joint density function between the random variable here, random variable 

here and variable here, with respect to the states at t equal to tau. 
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Now, I write this 3-dimensional joint density function, in terms of conditional density 

functions as shown here and then express this conditional density function of x 2 

conditioned on t 2, conditioned on what happens here and what happens here, I write this 

integral in this form and if I use now the Markov property, this becomes here this p of x 

1 t 1 and p of x 1, t 1 here gets canceled and I will do two things, for l h s I will write this 

and on the right hand side, I will use Markov property and get this relation, that is 

probability density function of x 2, t 2 condition on x 1, t 1 is given by the integral of x 2,  

t 2 conditioned on x, tau, which is intermediate time instant into probability density 

function of x of tau, conditioned on x 1, t 1 dx; this should be true for all t 1, t 2 and tau. 

So, this can be viewed as a kind of a compatibility or consistency condition for the 

process to be Markov. Now, this forms the basis for actually analyzing vibrating systems 

and deriving the equation of motion for the probability density function; so, the big 

picture that we should bare in mind at this stage, is to answer this question, that is how 

do you utilize this result in characterizing response of randomly driven dynamical 

systems; so, this is our agenda, we should keep that in mind, when we get into some of 

these details. 
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Now, we talk about what are known as random processes with independent increments; 

now, let X of t be a random process with continuous state and continuous parameter 

time; I consider increasing ascending sequence of time t 1, t 2, t n, we consider this n 

time instants and this defines the n random variables X of t 1, X of t 2 and X of t n, now I 

define another random variable X (t 1, t 2) as X of t 2 minus X of t 1, this random 

variable is called the increment of X of t on the interval t 1 to t 2. 

Now, for given time is instant t 1, t 2, t n, we can also form a sequence of increments, 

which are again random variables X (t 1, t 2), X (t 2, t 3), so on X (n minus 1, t n), this 

form a sequence of independent random variables, if this sequence of increments form a 

sequence of independent random variables, then we say that X of t is the process with 

independent increments, that is the definition of a process with independent increments. 
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Now, let X of t be a random process with independent increments; now, I define Y of t as 

X of t minus X of 0 with t greater than or equal to 0. Now, Y of t is a process with 

independent increments and also has a property that probability of Y of t equal to 0 is 1, 

because Y of 0 x of 0 minus x of 0 which is 0; so, Y of t equal to 0 has probability of 1. 

And also Y of t n minus 1, t n is nothing but X of t n minus 1 t n, if you write say Y (t n 

minus 1, t n) it is Y of t n minus Y of t n minus 1 Y of t n would be X of t n minus x of 0 

and Y of t n minus 1 will be Y of t n minus 1 minus x of 0 and that would get cancelled 

and it will be same as X (t n minus 1, t n), that means, Y of t has all the properties of this 

sequence, except that t equal to 0, probability of Y of t equal to 0 is equal to 1. 

So, therefore the point is without loss of generality, we can always take P of X of t equal 

to 0 as 1. So, if it is not true, then we can make this transformation and deal with the 

process Y of t. 



(Refer Slide Time: 23:01) 

 

Now, the important feature of process with independent increments is that, such 

processes have Markov n property. Now, to see that, let us define Y of t equal to X of t, 

if probability of x of 0 equal to 0 as 1, otherwise X of t minus x of 0, if this is not equal 

to 1; in any case, Y of t naught will be 0, t naught is 0. 

Now, we consider the sequence t n greater than t n minus 1 etcetera, t naught and t 

naught is 0 and the associated random variables Y of t n, Y of t n minus 1 and Y of t 1. Y 

of t n can be written as sums of these increments Y of t j minus Y of t j minus 1, we can 

substitute and verify that, it is indeed true, that means, Y of t 1 minus Y of t 0 plus Y of t 

2 minus Y of t 1 etcetera, etcetera, it will be left with only Y of t n. 
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Now, we denote Z j as Y of t j minus Y of t j minus 1, these are sequence of independent 

random variables. Now, the Y of t n therefore can be written as Z n plus Y of t n minus 

1; so, this is in the form of a simple random walk and we already should the simple 

random walk has Markov n property, therefore Y of t is Markov. You can see here Y of t 

n depends on Y of t n minus 1 and the change from t n minus 1 to t n is caused due to Z n 

and Z n, Z 1, Z 2, Z 3, Z n are all independent random variables; therefore, Y of t is 

Markov. 
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Till now, I have been taking about sequence Markov property of scalar random 

processes; now, we can generalize this notion to vector random processes. So, if X of t is 

a vector random process with continuous state and continuous parameter time t, let us 

consider such a random process, again we consider the time sequence t 1, t 2, t 3, t n, the 

n time instants and associated random variables X of t 1, X of t 2, to X of t n; X of t 1 is a 

vector of random variables, X of t 2 a vector of random variable. 

So, the vector process X of t is said to possess Markov property, if n th order conditional 

joint probability distribution function of this vector random variables, X of t n less than 

or equal to x n conditioned on these events is given by probability of X of t n less than or 

equal to x n, conditioned only on what happened at t equal to n minus 1 and if this is true 

for any n, for n choice of t 1, t 2, t 3, t n, we say that the vector random process X of t has 

Markov property; this is straight forward extension of the definition for a scalar case. 
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Suppose, if you consider just to elaborate this notion a bit; the m-dimensional vector 

random process X of t, X of t 1, X of t 2, X of t is said to be Markov, if the probability of 

intersection of y equal to m x j of t n less than or equal to x j, which is nothing but the 

probability distribution function, conditioned on this events, where X of t 1, X of t 2 here 

are all vector random variables and this depends on only the state at t equal to t n minus 

1, then we say that X of t is Markov. 



So, this quantity, we call it as the transition probability distribution function for the 

vector random process X of t; associated with this, we can derive the transition 

probability density function for the vector random process X of t, by carrying out the m 

time differentiation of this transition probability distribution function; these are straight 

forward extension of the notions that we are used in scalar case. 
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Some remark should be made at this juncture; a component of a vector random process 

would be a scalar random process, but that need not have Markov property; a vector 

random process could be Markov, but the components of such a Markov random process 

need not be Markov; we will see that in due course again. 

Now, different components of a Markov vector random process could be differentiable, 

in the mean square sense to different levels; a Markov process itself is not differentiable. 

I will I clarify this, what, these things, mean in due course, but we should make notes of 

this at the outside. 

If a vector random process has independent random increments, that is vector ally, the 

components of the random process, need not have independent increments; so, you need 

to think about it and verify by actually working out, what exactly this statements mean. 
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The Chapman Kolmogorov Smoluchowski equation, that is the consistency equation, can 

be generalized for the vector random process and the mathematical form of that remains 

identical, except that, now we are writing joint probability density functions instead of 

scalar probability density function; so, that means, the probability density function of x 3 

tilde conditioned on x 1, t equal to t 1 is given by this product of these two TPDF 

integrated are y 1, y 2, y n; so, this is the condition for internal consistency of a vector 

Markov random process. 
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We could generalize the theory of Markov process in a slightly different way; again, let 

us return to a scalar random process. Let X of t be a scalar random process with 

continuous state and continuous parameter time t and again, we consider n time instants 

and associated n random variables. Now, X of t said to possess second order Markov 

property, if probability of the event X of t n less than or equal to t n, the event the X of t 

n less than or equal to X n conditioned on these events, depends upon what happen 

during t equal to t n minus 1 and t equal to t n minus 2, if this is the property, that the 

probability distribution satisfy, then we say that X of t is Markov with second order. So, 

this notion can be generalized to higher orders; this, I am mentioning for sake of 

completeness. 
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Now, one more thing that we will be talking about is Markov process with stationary 

increments; now, X of t is said to be Markov process with stationary increments, if you 

consider the TPDF, suppose you considered two time instant t 1, t 2 and other two time 

instants t 1 and t 3, that means, I shift this t 1, t 3 by a fixed amount tau, that means, the 

distance from A to B is t 3 minus t 1 and distance from C to D is again t 3 minus t 1; that 

means, there are now two random variables, here separated by t 3 minus t 1 and there are 

two more random variables separated by the same distance t 3 minus t 1. 



So, if we now consider the transition probability density function from say A to B and C 

to D and if it is a function of only tau, then we say that processes stationary increments. 

So, TPDF from A to B is same as TPDF from C to D. 

(Refer Slide Time: 31:05) 

 

So, in such a case situation, the TPDF can be simply be written as p of x 3; tau 

conditioned on x 1, where tau is a transition time and as tau goes to infinity, the 

transition PDF now depends only on tau x 3; tau and the memory of x 1 is lost and this is 

one of the properties that we need to use. 

So, Stationary Markov random process is completely specified in terms of the TPDF in 

this case, because at a tau tends to infinity, it is defined only in terms of the transition 

probability density function. You should notice that X of t, if X of t stationary, X of t has 

stationary increments, but it is does not mean that, if X of t is stationary increments, this 

statement need not mean that X of t is stationary. So, you can again verify, these are 

small points that would help you understand the notion of stationary, stationary 

increments. 



(Refer Slide Time: 32:11) 

 

Now, our basic interest in using Markov property would be to derive an equation for 

evolution of the probability density function, so how do we go about doing that. This 

equation is known as kinetic equation; so, let X of t be a scalar random process and p x 

(x; t) be the first order probability density function of X of t; so, p x this PDF depends on 

two variables x and t. Can we derive a partial differential equation which describe this 

evolution in x and t that is a question, how can we do that. If we can do that, x and t 

would be the independent variables and the dependent variable will be the PDF. 

Thus the differential equation that we are looking for would be a partial differential 

equation with p x dependent variable and x and t as independent variables. Furthermore, 

can we also derive the partial differential equation governing the n-dimensional joint 

PDF of X of t, if we can do it for one-dimensional PDF, you may think of doing it for n- 

dimensional. And so, from now onwards, what I will do is, this p x (x, t), I will simply 

write it as p (x, t), this subscript X of t I will omit, for sake of simplicity; this is a 

reference that you may find useful for the topic, that I am going to cover in this part of 

the lecture; how do we proceed. 
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Now, let us consider two random variables X of t and X of t plus delta t; so, the 

probability density function at t plus delta t can be obtained as the marginal density of 

the joint PDF at t and t plus delta t this is a simple statement. This itself can be express in 

terms of product of a conditional probability density function and a first order probability 

density function. 

Now, let us define the increment delta X of t as X of t plus delta t minus X of t; let us 

consider the conditional characteristic function of delta of X of t conditioned on X of t 

being equal to x point, so that would be expectation of i u delta X of t conditioned on X 

of t equal to x phi. 

Now, let us denote this as phi u, t plus delta t conditioned on X of t equal to x phi; so, 

this is the actually expectation and in terms of the density function it is given, this is the 

definition of the characteristic function, where this delta X of t is a X of t plus delta t 

minus X of t such that delta x is x minus x phi. 
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Now, we will do some manipulations on this; if this is a definition of characteristic 

function, the conditional PDF can be obtained by inverting this through using inverse 

Fourier transform, so I get this equation, now the integration is with respect to u; now, 

you recall f of x plus h can be express in terms of tailor’s expansion in this form, that we 

will be using. Now, let us expand the characteristic function around origin u equal to 0, 

so I will write phi u, t plus delta t as 0 plus u t plus delta t etcetera and then expand this 

around the region u equal to 0 and if we do that, we get this expansion and we know that 

through the property of characteristic functions, this is nothing but the moments of the 

random variable. So, in this case, we are talking about delta x conditioned on X of t 

equal to x prime and I get this as delta of X n expectation of that. 
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Now, quick recall, we know the definition of a characteristic function of a random 

variable is the expectation of e rise to I omega x and phi x of omega is actually the 

Fourier transform of the probability density function and we have shown that the 

characteristic function has this property, which I am using in fact. And the inverse 

Fourier transform is given, in terms of this and that leads to definition of probability 

density function. 
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Similarly, we can define characteristic function for a random process, suppose if we 

consider n random variables X of t 1, X of t 2, X of t n, I can write the expression for the 

joint characteristic function of these random variables through this expectation and that 

is nothing but this integral. Here, this u 1, u 2, u 3, u n are all real valued and the 

moments X of t 1 to the power of j 1, X of t 2 to the power of j 2 etcetera, can be obtain 

in terms of the derivatives of this characteristic function evaluated at the origin, 

following this rule; this is the extension of the definition characteristic function for a 

random process. So, the red font, I am using to recall what we have already done; so, 

these are thing we are recalling. 
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Now, let us go back and write in the expression for the inverse Fourier transform of the 

density function, the expansion that we have used and we get this expression, where this 

quantity a n x prime, t is this moment delta X n of t conditioned on X of t equal to x 

prime and these are known as incremental moments. So, in terms of incremental 

moments, I have got, now, the expression for this probability density function. 
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Now, I need to redesign this expression, recalls this expression slightly in a different 

way; so for that we recall if we take the Fourier transform of a direct delta function we 

get a constant. So, a direct delta function, therefore can be expressed as inverse transform 

of e raise to minus i u x, I have shown here; now, if you differentiate this, it can be 

express in terms of differential of the on the right hand side; so, we get this expression. 

So, what we are getting here turns out to be related to the derivatives of direct delta 

function and we can use that result here and we get this expression. 
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Now, a slight amount of rearrangement of these terms and splitting, so we have 

substituted in terms of direct delta function and we return now to the first order density 

function this is the integrand, so this expression will come in the integrand and I get this 

expression and again rearranging these terms and using this fact that n th order derivative 

of a integral like this is nothing but d n d x to the power of n f of a and if we do that, I get 

this expression; this derivation is bit t d s, but I am trying to highlight some important 

steps, so you need to work through this bit patiently, then only we follow this. So, what 

we do now is a summation on the right hand side, I will right the first term that is n equal 

to 0 separately and then take the summation from one to infinity. 
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So, in this I get this expression a naught x, t and this is nothing but delta x to the power 

of 0 of t conditioned on X of t equal to x prime and this is one. Now, that would mean, I 

can take this to the left hand side and now I am in a position to define the derivatives, I 

will divide this by delta t and take limit delta t to 0 and on the left hand side, I get dou p 

by dou t and on the right hand side, I get these expressions, which can be simplified to 

get a partial differential equation as displayed here. 

So, this is what I am looking for, this is actually the evolution of probability density 

function of X of t, in terms of what are known as incremental moments or derivative 

moments as shown here. We can call this right hand side, that is, the we take dou by dou 

x outside and call the what remains, that is n equal to 1 to infinity minus 1 to the power 

of 1 divided by n factorial and n minus 1 derivative of this, as lambda (x comma t), then 

this equation can be written as dou p by dou t plus dou lambda by dou x equal to 0. So, 

this takes a quite elegant form now, so this can be this can be viewed as equation of 

conservation of probability; so, this similar to the equation of continuity in fluid 

mechanics. So, this is a diffusion equation and this quantity lambda (x, t) can be 

interpreted as amount of probability crossing x in unit time in the positive direction; so, 

this is analogy with fluid mechanics that would be alpha. 
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But this equation, although, it has nice form if you look back, this lambda itself has terms 

running from n equal to 1 to infinity, which has derivatives to the power of n, where n is 

running from 1 to infinity; so, that would mean, that this equation has infinite order 

respect to the spatial coordinate; therefore, it is not an partial differential equation which 

can be solved this only a formal representation. 

But there is one nice result, which would help us to simplify this and that is what I will 

briefly mention, the what this results say is, if the derivative moment alpha n exists for 

all n and is 0 for some even n, then it automatically means, alpha n is 0 for all n greater 

than or equal to 3; what that means is, this differential equation has infinite number of 

terms, if it is going to have finite number of terms, it has to stop at n equal to 2, there 

cannot be an equation which is valid for n equal to 5,7 etcetera, if it is not 2, it has to be 

infinity, there is nothing in between. 
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So, there exist two cases of this continuity equation, the one in which the order of the 

equation in x is infinite and other in which the order is 2 or less. We would be interested 

in applying the kinetic equation for the case, where this alpha n equal to 0, for n greater 

than or equal to 3 and we will show that for a Markov process that is indeed true. 
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Now, there is the brief proof for this, I will just highlight the steps, so that you could go 

through bit more carefully. So, if the derivative moment alpha n exist for all n and is 0 

for some even n then alpha n x, t equal to 0 for n greater than or equal to 3. 
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So, let us consider the case where n is greater than or equal to 3 and let n b odd, so alpha 

n x, t is actually this expectation and I can write this as product of this quantity inside the 

bracket to the power to the power n minus 1 by 2 and n plus 1 by 2, if you multiply this, 

we will get this term. Now, this is a permissible splitting, on this now I will apply 

Schwarz inequality, you recall Schwarz inequality, we use to show that, I have 

correlation coefficient is between plus 1 and minus 1, earlier the same inequality I am 

using, I will get alpha n square x, t must be less than or equal to product of 2 

expectations, that is alpha n square x, t must be less than or equal to product of alpha n 

minus 1 x, t alpha n plus 1 x, t for n greater than or equal to 3 and n odd; for n even, we 

can show that, we get another similar inequality. 

Now, if you carefully consider these two inequalities, you can show that, if alpha n is 0 

for some n greater than or equal to 3, then all alpha should be equal to 0. 
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So, let alpha r ( x, t) equal to 0, where r is an even integer; so, let n equal to r minus 1 r 

plus 1 and using this we get these two inequalities, for r greater than or equal to 4 and r 

greater than or equal to 2. 
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Similarly, we get for n r minus 2 and r plus 2, using for n even, we get these two 

inequalities and if I put all of them together, I have these four inequalities. Now, an 

illustration, let alpha 3 be 0 and alpha n exist for all n; now, you can use these 

inequalities in sequence and show that, if this is true alpha 4 must be equal to 0 and alpha 

5 must be equal to 0, if r 4 and 5 are 0, 6 and 7 must be 0, if 6 and 7 is 0, 8 and 9 must be 

0; so, you can show that, all n greater than or equal to three would be 0. 
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So, that is constructed here and this require some moment of reflection, there is no 

complex issue here, you have to simply understand, what is being said through these 

inequalities and if you appreciate that, we would have proved the statement that we made 

that if alpha n greater than or equal to alpha n for n greater than equal to 3 is 0, no, what 

is the statement, the statement is if the derivative moment alpha n exist for all n and its 0 

for some even n, then alpha n is 0 for all n greater than or equal to 0, for all n greater 

than or equal to 3. 
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If that is the case, we are considering the kinetic equation, now becomes a simpler 

equation differential equation dou p by dou t is minus dou by dou x alpha 1 into p plus 

half dou square by x square alpha 2 into 2 p, this equation is known as the Fokker Planck 

equation. Here, this lambda is express in terms of alpha 1 and alpha 2 and the initial 

condition for this equation would be that t equal to 0 x of 0 can be a random variable and 

its probability density function is specified. 

Now, boundary condition different possibilities exist, I mentioned about absorbing 

barriers and reflecting barriers and so on and so forth; so, there is a body of a literature 

on, what are the admissible boundary conditions and when do solutions exist etcetera, 

etcetera, so I will not be getting into although details. 
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Now, if X of t takes values from minus infinity to plus infinity, as in the case of say a 

Gaussian random process, then boundary condition is to be specified at plus minus 

infinity; these boundaries are inaccessible. So, if we now consider the kinetic equation 

and integrate from minus infinity to plus infinity, we can manipulate this expression a bit 

and we know that t of area under the probability density function is 1, therefore the first 

term would be 0 and that leaves us with the condition that dou lambda by dou x into dx 

must be equal to 0; this requires lambda (minus infinity; t) must be equal to lambda 

(infinity; t); a stronger condition would be that these two are independently equal to 0 by 

a much stronger condition would be that probability density function itself is 0. 
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So, this we can show that corresponds to an absorbing boundary and this corresponds to 

a reflecting boundary. If X of t can take values only in the bounded region x 1 to x 2, 

then the Fokker Planck equation is valid in this region, with, you know, you have to 

manipulate this equation again form if you integrate from x 1 to x 2, we get this 

condition and a stronger condition would be this and much a stronger condition is this 

and as I was mentioning, the this boundary condition corresponds to a reflecting 

boundaries and this stronger condition corresponds to absorbing boundaries. 
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Now, if alpha n are independent of time, stationary solutions might exist, such that dou p 

by dou t become 0 as 1 as t goes to infinity and one gets the simplified equation, which 

is, there is no time variable; this is, in fact, an ordinary differential equation which leads 

to the solution lambda of x is equal to 0; so, this is one way to find out steady state 

solution. 
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Now, the generalization of a kinetic equation for a case of vector random process is quite 

straight forward conceptually, but it is bit tedious to express, but I leave that as an 

exercise, this will be the form of the kinetic equation; here, now I get the derivative 

moments in slightly more involved manner and this is reflected here. 
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So, till now what we have done is, we have derived the governing partial differential 

equation, for the evolution of probability density function. Now, the question that we 

should be answering is to set up this kinetic equation, for example, if you want to setup 

this equation, I need to determine this parameters alpha 1 and alpha 2. 

Suppose, I look at a dynamical system and I formulated its equation of motion starting 

from that, can I derive alpha 1 and alpha 2, in terms of, for example, mass stiffness and 

damping property of the system, can I derive this derivative moments, I will explain how 



that can be done in the next lecture, but if that can be done, then this equation that we are 

seen here can be thought of as the equation of motion, for the dynamical system with 

depended variable being the probability density function. 

We have derived till now the equation motion for the samples of a random process, from 

that we could derive the mean, the covariance etcetera. Now, can we derive the equation 

of motion directly for the probability density function itself, if that is so, how do we 

relate this equation to the governing deferential equation of motion for a dynamical 

system? 

If we derive this equation, the next question would be on the associated initial 

conditions, the associated boundary conditions, when what are admissible and when do 

we hope to get a solution. The next issue would be how we can solve this equation, so it 

turns out, that for linear dynamical systems with additive Gaussian white noises; this 

differential equation can be solved exactly, not just that but that is not our major use of 

Markov process theory. The Markov process theory becomes quite useful, because this 

equation of motion can be derived even for non-linear systems for cases, where there are 

non Gaussian excitations, for cases when the excitations are parametric; there can be 

parametric excitations and external excitations simultaneously acting on the system, this 

forms an avenue for formulating the governing equations of motion for the probability 

density function and under certain situations, the governing equations even for non-linear 

systems and even for parametrically excited systems can be solved exactly. 
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So, the Markov process approach provides a means for obtaining exact solutions for 

certain class of non-linear random vibration problems. It also provides a strategy to 

formulate approximate methods, when such exact solutions are not possible. So, this is 

what, is essence of Markov vector approach and in the next lecture, we will consider 

some of these questions in greater detail and will conclude this lecture at his juncture. 


