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We have been discussing dynamics of continuous systems; towards the end of the last 

lecture, we reviewed the analysis of continuous systems under deterministic load. So, we 

considered as an example the dynamics of an Euler Bernoulli beam, whose equation is 

displayed here, the first term here is the stiffness term, this term is the inertial term, this 

is the, there are two damping terms, one is c of x into y dot, this is velocity dependent 

damping, this is strain rate dependent damping and f of x, t is the external force, these are 

the initial conditions and boundary conditions has appropriate have to be specified and 

we assume that this epsilon of x is proportional to the flexural rigidity; so that, this 

damping term will be proportional to the stiffness of the system. 
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We first carry out an un-damped free vibration analysis and determine the normal modes, 

here these are the Eigen functions phi n of x and they are governed by this equation; this 

is the Eigen value problem and the Eigen functions satisfy, this pair of orthogonality 

relations one with respect flexural rigidity, where the second derivative of the Eigen 

functions are involved and the other with respect to the mass function, where phi n of x 

and phi k of x are involved and we expand the solution to the forced vibration problem, 

in terms of the generalized coordinates a n of t and phi n of x, this n runs here from 1 to 

infinity. And the governing equations for a n of t turns out to be of this form a n double 

dot plus two eta n omega n a n dot plus omega n square a n is p n of t. P n of t is the 

generalized force given here and is damping term 2 eta omega n is expressed, in terms of 

the, for the proportional damping model, that we are assuming it will be in terms of two 

constants alpha and nu and omega n square. 
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The mode shapes for the Eigen functions, for a simply supported beam, we saw to be 

sine functions; the first mode is a half sine wave, second one is one complete sine wave 

and so on. So, alternate Eigen functions are symmetric with respect to mid span and anti 

symmetric with respect to mid span. 
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So, we have reduced the given partial differential equation into an infinite set of single 

degree freedom system, each one of which can be solved using the methods that we have 

already learned. And based on the solution for a n of t the expression for the 



displacement function can be expressed, in this series form. So, the first terms here 

shown in the bracket here are the contributions from initial conditions and this is the 

particular integral, in terms of the Duhamel’s integral associated with each one of these 

single degree freedom systems. 
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Once we find displacement, we could go ahead and evaluate the slope which is the 

derivative of y x, t, here we need phi n prime of x and bending moment, which is E I of x 

into y double prime x, t as shown here. And shear force, which is the derivative of the 

bending moment shown here and other quantities like bending stress, shear stress and 

principal stresses at any point, can be eventually evaluated. 

Here, we are summing the summation should run from n equal to 1 to infinity, but 

typically in numerical work, we stop at some finite capital N and the rate at which these 

series converges is different for displacement slope bending moment and shear force. 

Typically, lesser number of terms is needed for convergence of displacement and higher 

number of terms is needed for shear force. 
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We will continue with this discussion now and we will see how to analyze problems of 

single span beams, if excitations appear as support motions; this, a typically what would 

happen in an earthquake engineering problems. So, to illustrate that, we consider a single 

span beam which is clamped at the two ends and the two supports are subjected to 

displacement u of t and v of t. 

The field equation here we are assuming a simpler model for damping and we are also 

assuming that beam is homogeneous; so, we get E I y 4 plus m y double dot plus c y dot 

equal to 0. The bound, the excitations u of t and v of t appear as boundary conditions, 

that is y (0, t) is u of t and y ( l, t) is v of t. Since, the beam is clamped at the two ends, 

we get y prime (0, t) is 0, y prime (l, t) is 0. We also assume for shake of simplicity that 

this beam starts from rest. Now, a complicating future here, is that, the boundary 

conditions here are time varying. So, consequently, we will not able to use the Eigen 

function expansion method to solve this problem. So, we overcome this difficulty by 

implementing a transformation of the dependent variable. 



(Refer Slide Time: 06:15)  

 

And we introduce a new dependent variable w and related to y (x, t) through this 

relation. Here, w is the new dependent variable, h 1of x and h 2 of x are unknown 

functions, which we need to determine and u of t and v of t are the support 

displacements. So, now you look at boundary condition at x equal to 0, we get y (0 , t) is 

w (0, t) plus h 1 of 0 u of t plus h 2 of 0 v of t and this must be equal to u of t. 

We can satisfy this requirement by taking w (0, t) as 0 and h 1 of 0 as 1 and h 2 of 0 as 0. 

Similarly, the condition y prime (0, t) can be satisfied by taking w prime (0, t) equal to 0, 

h 1 prime of 0 is, this should be 0 and h 2, h 2 prime of 0 is 0. Similarly, we satisfy 

boundary condition at x equal to l and put condition on displacement and condition on 

slope, we will get, now there are two functions h 1 and h 2 for each one of these 

functions, we get four conditions at x equal to 0 and at x equal to l. 
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Now, if we substitute this assume solution form of the solution into the governing 

equation, I get E I w 4 h 1 4 u plus h 2 4 u and m w dot, w double dot and so on equal to 

0, now what we do is, we select h 1 4 and h 2 4 to be equal to 0. And consequently, for 

example, for h 1 of x I get a cubic polynomial with four constants and I have four 

conditions specified on h 1, using that, I can determine these four constants a, b, c, d and 

if you do that, we get this function h 1 of x is 1 minus 3 x square by l square plus 2 x 

cube by l cube as shown here. Similarly, we can use h 2 of fourth derivative of h 2 equal 

to 0, would mean, again h 2 of x, again a similar cubic polynomial, similar to this; and 

then, again on h 2, I have 4 conditions, using that, we can show that h 2 of x is another 

cubic polynomial as shown here. 
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If you have to plot them, they look like this h 1 of x is this and h 2 of x is this. So, if you 

are familiar with finite element modeling of beam elements, you will recognize that these 

are nothing but two of the shape functions that we use in discretizing beam element. 
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So, with these, we now go back to the original field equation h 1 of 4 is 0, h 2 4 of 0, is 

0; so, I get E I w 4 m w dot c w dot is equal to the remaining non-zero terms, are put on 

the right hand side. And this, the quantities on the right hand side are given m is known u 



double dot is known, v double dot is known, c is known, u dot is known, v dot is known 

so on and I call this right hand side as f ( x, t). 

In this analysis, now if you look at the boundary conditions on w, we see that the 

boundary conditions here become time independent; so, w (0, t) is 0, w prime (0, t) is 0 

and w (l, t) is 0 and w prime (l, t) is 0. We could, of course derive the initial conditions as 

well and this problem is now amenable for Eigen function expansion method and we can 

proceed and solve this problem. 
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So, what we are doing is, the given problem where the excitation appear as time 

dependent boundary conditions, through this transformation we are converting, then this 

problem into an equivalent problem, where the beam now carries a hypothetical load 

which varies space, in space and time, and the displacement of this is w not y, and this w 

is related to y through this equation, where w is solution of this u and v are given support 

displacement, and h 1 and h 2, we have selected suitably. 
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So, we can look at the transformation that we have done; this is amenable for an 

interpretation. this y (x, t) is a, can be viewed as a total response and w as a dynamic 

response and the term inside this bracket is the pseudo dynamic response, this is 

analogous to what we did for discrete multi-degree freedom systems, that is, in this 

structure, without the inertial terms participating in the solution, we still get certain 

displacement, and stresses in the beam due to differential support motions, and that is the 

pseudo dynamic response, where inertial effects and damping effects are not included. 



This is a dynamic component, where inertial components are also included, but the 

supports are now not moving. So, this is as I already said is analogous to what we 

already saw, when we studied discrete multi-degree freedom systems which undergoing 

differential support motions. 
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We are eventually interested in analyzing the response of the beam to random 

excitations; so, to prepare the basic formulations to achieve that, we need to consider a 

few deterministic problems, one is the problem of a harmonically driven beam, we 

consider this beam, the boundary condition here is shown to be hinged at the two ends, 

the beam is hinged at the two ends, but this is just for illustration, it can be any other 

boundary condition as well. So, we assume that, this beam is driven harmonically by a 

force e rise to i omega t applied at distance psi from this end and we are interested in 

knowing displacement at a point x, at this point which is at a distance x from this left 

hand. So, the governing equation here is displaced, here the left hand side remains the 

same. 

 Now, on the right hand side, we apply the force e rise to i omega t and this is a 

concentrated load applied at x is equal to psi; therefore, I represent that by using direct 

delta function delta of x minus psi. We assume certain initial conditions and the 

boundary condition appropriate for this, and conditions shown here is displacement is 0, 

bending moment is 0 here and similarly displacement is 0 and bending moment is 0. We 



are interested in solution of this problem as t becomes t goes to infinity, that means, we 

are basically interested in investigating the harmonic steady state of the Euler Bernoulli 

beam. 
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So, we can expand the solution in terms of Eigen functions phi n of x and generalize 

coordinates a n of t and this phi n of x satisfies this equation and this orthogonality 

relations with respect to E I and m; using this we can derive the equations for the 

generalize coordinates, and on the right hand side, the generalize force is now given by 0 

to l e rise to i omega t phi n of x delta of x minus psi d x. 

So, this integration can be carried out in a straight forward manner, so we replace x by 

psi and I get phi n of psi exponential i omega t and this is true for n equal to 1 2 infinity. 

So, the given partial differential equation is thus equivalent to a family of single degree 

freedom systems, each one of which is driven by e rise to i omega t and the magnitude is 

given by the value of the mode shape at the drive point. This can easily we solved, we 

know how to get a, n of as t tends to infinity. 
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So, we get t tend to infinity a n of t is phi n of psi e rise to i omega t omega n square 

minus omega square plus i two eta n omega n. Now, if we now substitute this solution 

into the expression for y (x, t), I get phi n of x into a n of t, phi n of x is here, the 

remaining terms are the a n of t which I had derived just now.  

This summation, I write this solution as G of x comma psi comma omega e rise to i 

omega t, where G is given by this summation; this function is known as the Green’s 

function for the beam. It is function of the point, where you are majoring the response 

the point where you are driving and the driving frequency; it is a complex valued 

quantity, it has an amplitude and a phase. 



(Refer Slide Time: 15:58)  

 

And it is actually dissymmetric in x and psi, this is actually manifestation of reciprocity 

theorem, the Green’s function is symmetric in x and psi, it is complex valued and this is 

actually the generalization of the frequency response function matrix that we considered 

for discrete multi-degree freedom systems. We had there a n by n matrix, now it is a 

function in x and psi; so, the H i j of omega that we used in discrete multi-degree 

freedom system, now this role of i and j is played by x and psi here. 
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A typical Green’s function when measurement point is 0.3 l and drive point is 0.3 l is 

shown here, and we see here, that the amplitude of the Green’s function, this is actually 

the amplitude peaks at the system natural frequency, these are actually the system natural 

frequencies, and between the two modes, there is a characteristic minimum. 

So, here what happens is, the contribution suppose you are driving here, the contribution 

to response is pre-dominantly this mode and this mode, and they add up produce a small 

quantity and that appears as a minimum. 
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Now, if you drive at a different point, then where measurements are made, that means, 

now you measure at point 4 l but drive at 0.3 l. Here, again the frequency response 

function peaks at the natural frequencies, but between the two modes there, is now a 

different kind of behavior possible. Here, what happens is, again if you drive at this 

frequency, the response is mainly made up of contribution from this mode and this mode, 

but here what happens is the contribution from this mode cancels with the contribution 

from this mode and we get an anti-resonance point. 

Whereas, here if you see the contribution from this mode and this mode, add to produce 

this value and they are of the same sign; therefore, we get this characteristic minimum, 

whereas this is a sharp anti resonance point, this actually does not go to 0, because there 

will be contribution, from other higher modes which will be small and yet but not 0 

anyway. 
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So, another thing that you should notice here is that, the beam natural frequencies as you 

go higher up in the frequency, the spacing between frequency increases; in fact, this 

increases linearly, this is property of a Euler Bernoulli beam, if it were to be an actually 

vibrating rod, these peaks will be uniformly is best. And if it is a membrane or a shell, 

these peaks comes closer as we go higher up in the frequency and this frequency 

response function tend to become smooth. We will write to that point later, when we 

briefly discuss what are known as statistical energy analysis methods. 
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So, this is another plot of amplitude of frequency response function; here drive point is 

quit removed from the excitation point, and we see that, here there are more anti-

resonance points, this is again one of the properties of Green’s function, if drive point 

and measurement point move away, there will be more anti-resonances in the response. 
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Now, equipped with now the definition of Green’s function, we will now consider the 

response of the beam to a general force f of t and will perform the analysis in frequency 

domain. So, the field equation is the left hand side, is the same the right hand side f of t 

into delta of x minus psi, in the example, that we just now discussed f of t was e rise to i 

omega t; now, it is more general function f of t, we will assume that f of t admits a 

Fourier representation, that means, that Fourier transformation exists and we are 

interested in the Fourier transform of the response quantity y (x, t). It can easily be 

shown that, the Fourier transform of y (x, t) is given in terms of the Green’s function G 

of x, psi, omega into the Fourier transform of f of t, which I had denoted as f of omega. 

This is quite similar to our input output relation in frequency domain, which we had 

derived for single-degree freedom systems and multi-degree freedom system; so, these 

are generalization for a continuous system. This g here just to emphasis again is obtained 

as a series made up infinite number of terms, each term coming from one of the normal 

modes. 
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Now, we look at this problems in time domain, instead of applying a unit-harmonic load, 

if I were to apply a unit impulse load at x equal to psi, and again ask the question what is 

the response at this point x at a distance x from this end; so, on the right hand side, here I 

get an impulse applied at t equal to 0 and at x equal to psi; so, that is represented as 

product of two direct delta functions. So, we assume that system start from rest, so initial 

displacement and initial velocity are 0 and again the boundary conditions are 

displacement and bending moment are 0 here and here. 
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we can again use the Eigen function expansion representation for the solution a n of t are 

the generalized coordinates phi n of x are the Eigen functions, which satisfies these 

orthogonality relations and the equation for the generalized coordinates is displayed here; 

and on the right hand side, the generalized force is obtained as 0 to l phi n of x delta of t 

delta of x minus psi d x. 

So, one of the integration with the integration with respect to x, now can easily be carried 

out, we replace x by psi and write phi n of psi into delta of t. So, now, each of these 

single degree freedom systems is now driven by unit impulse and impulse applied at t 

equal to 0 and its amplitude is given by the value of the mode shape, the n th mode shape 

evaluated at a drive point. 
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So, a n of t consequently will be phi n of psi into h n of t, where h n of t is a response to a 

unit impulse response function, this is a unit impulse response function; so, a n of t is 

given by this, we are assuming system to be all the modes to be under damped. So, we 

write the impulse response function for the n th generalize coordinate as 1 by omega d n 

e rise to minus eta omega n t sin omega d n t. 

The generalized mass here m n is 1, because that is how we have normalized the Eigen 

functions, so we are taking 0 to l m phi n square of x d x as 1; therefore, this m n does 

not appear here. We will now substitute a n of t into the series expansion y (x, t) and we 

get this function; this function is again known as Green’s function, but it is Green’s 



function in time domain, is again a function of drive point and measurement point, now it 

is a function of time. It is again symmetric in x and psi, that is G (x, psi, t) is G (psi, x, t) 

that means, if you interchange the drive point and measurement point, the Green’s 

function will not change. 
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This is a plot of Green’s function, when the drive point and measurement points coincide 

and both are equal to 0.3 l; you can see here, that initially the response is made up of 

different frequencies, and eventually, it is used to be decaying at the same frequency, the 

single frequency; that means, in free vibration, the beam oscillates, the beam oscillation 

is made up of contributions from several modes typically. This is drive point is 0.3 l and 

measurement point is 0.4 l, again the characteristic exponential decay is seen. 
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This is another variation, the drive point is 0.3 l and measurement point is 0.9 l, and we 

can see here the contribution from different, more than one mode is evident, especially 

for response near t equal to 0, where we are applying the impulse. 
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Now, if we now apply a force f of t at x equal to psi, and I want to now characterize the 

time history of response, say the displacement at this point; just now we analyze this 

problem in frequency domain, we are now considering problem in time domain. 



So, the beam equation the right hand side changes, now it is f of t into delta of x minus 

psi, and we are assuming the system starts from rest, and we can show that, the 

displacement y of x, t is actually the convolution of Green’s functions appropriate for the 

psi and x, and this convolves with the time function f of t, to give me the displacement y 

(x, t). 

So this analogous to our x of t is equal to 0 to t h of t minus tau f of tau d tau, that we 

have seen that single degree freedom system. And for multi degree freedom system, we 

had impulse response function with indices H i j right; now, the role of i and j are now 

played by the independent variables x and psi, which take values between 0 and L now. 

(Refer Slide Time: 27:05)  

 

Now, I suggest an exercise, I can show that the Green’s function in time domain and 

Green’s function in frequency domain form a Fourier transform there; so, this is again 

analogous to the result, that we are shown that impulse response function and frequency 

response function for discrete multi-discrete, single degree as well as multi-degree 

freedom system form a Fourier transform here, that means, what we need to show is, this 

G and this G satisfied this pair of equations. 
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We will now consider what happens if the beam carries the general load f (x, t); so, on 

the right hand side, I have f (x, t) and we are assuming the system starts from rest. So, in 

time domain, we can derive the response in terms of the Green’s functions as shown 

here, and in frequency domain, we can derive the Fourier transform the response in terms 

of Green’s function in frequency domain. 



So, this is basically the input output relation in time and frequency domains for a 

deterministic system, subjected to a general load f (x, t); this again requires few steps of 

derivations, I leave this as an exercise. 

(Refer Slide Time: 28:35)  

 

Now, we will consider the problem of beam subject, beam subjected to random 

excitations; to start with we will consider the problem, where the beam is driven by a 

random process f of t, at a point x equal to psi and we are interested in response y (x , t). 

So, the governing equation, this remains the same, this is the sample you know equation 

for sample of f of t, and this f of t itself, we assume that its mean is 0, and it is a 

stationary random process with auto covariance function R f f of tau, and associated with 

this, we have the power spectral density function S f f of omega. 

We assume that the system start from rest and the boundary condition as appropriate are 

mentioned here. So, we are interested in finding out mean response, auto covariance of 

the response and cross covariance of the response at different points, here I have y 1 and 

y 2, what is the covariance between the two? What is the power spectral density function 

of y (x, t)? What is the cross power spectral density function between response here and 

response here? So, this, such question can be posed and we need to find answers to these 

questions and we need to formulate the problem in time domain and frequency domain; 

so, we will see how I will show a few of this formulations. 
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Now, we start by writing y (x, t) in terms of the Green’s function, convolution of Green’s 

functions with the applied f of t, and if you take now the expected value of this, is the 

expected value of f of tau is 0; therefore, this is 0. What happens to the covariance 

between response at x equal to x 1 and x equal to x 2 and time t equal to t 1 and time t 

equal to t 2? 

So, we need to find the expectation of, I mean, we need to evaluate this integral, where 

the expectation of applied force appears here. This is the stationary random process, so R 

f f of tau 1, tau 2 can be written as R f f of tau 1 minus tau 2. We have already derived 

the Green’s functions, in terms of the natural frequencies, and mode shapes of the 

system, modeled damping natural frequencies and mode shapes; so, they can that can be 

plugged here and these integrals can be evaluated to determine this requisite moments of 

the response. 
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We can of course write the response also in terms of power spectral density function of 

the input, to see that what we do is, I represent R f f (tau 1, tau 2) in terms of its Fourier 

transform, once I had Fourier transform, which is shown here and we interchange the 

order of integration. So, we first integrate with respect to tau 1 and tau 2, and define a 

function capital H, which is this double integral, in terms of system Green’s functions 

and this cosine function; this can be viewed as the generalized transfer function, which is 

function of space as well as time. 

So, I get the cross covariance between y at x 1 and y x 2 to be given by this expression. If 

you want mean square value what I have to do is, I have to put x 1 equal to x 2 to x and t 

1 equal to t 2 to t, and if you do that, in this expression I get x psi t, t omega d omega; so, 

this gives me the variance of displacement. So, the key to the evaluation is actually the 

evaluation of this double integral and this contains the Eigen function expansions for 

Green’s functions, in terms of natural frequencies, model damping and mode shapes; so, 

this in principle can be evaluated. 
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If you are interested in steady state response, we can look at the response in frequency 

domain and we consider the Fourier transform of a truncated sample of y (x, t) and that is 

given in terms of a truncated Fourier transform of a truncated damper of excitation 

through this relation. And we know that, power spectral density function is define 

through this expectations as t tends to infinity and if we apply this, we get the input 

output relation, that is the response power spectral density function at x due to driving at 

psi, is given by the amplitude of Green’s functions squared into S f f of omega. This 

analysis, of course, we can repeat for different values of x, that means, you can find out 

the cross power spectral density function between response at x equal to x 1 and response 

at x equal to x 2. 
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We now consider another example; we consider the beam excited by what is known as 

rain on the roof excitation. This is a space time white noise, having certain special 

properties; the equation is here on the right hand side is f (x, t), left hand side remains the 

same. Now, the property of f (x, t) is, that the mean is 0 expected value of f f (x, t) is 0, 

but if you find the covariance between f (x, t) and f of x plus psi and t plus tau, this is 

given by an intensity parameter i naught of x i naught and this m of x which is this mass 

here and delta of psi into delta of tau. 

This type of excitation is known as rain on the roof excitations. This is used in response 

of structures to say boundary layer turbulence and in problems of high frequency 

evaporation analysis, at some point we will return to this use usefulness of these models, 

but right now we will analyze this problem. 
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So, the first few steps are similar to what we have been doing till now, we assumed 

displacement in terms of generalized coordinates and the Eigen functions and these 

Eigen functions satisfy, this pair of orthogonality relations; and this Eigen value 

problem, this is the Eigen value problem and this leads to the equation for the 

generalized coordinates; and a generalized force on the right hand side is now double 

integral 0 to l phi n of x f of x, t d x and this n runs for 1 to infinity a n of t; therefore, in 

terms of the n th impulse response, for this system is given by this double integral. 

One of these integral is with respect to space, that arises in definition of the load and 

other one is the integral that appears in the Duhamel integral or the convolution integral; 

this is in time, this is in space. 
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Now, let us look at the moments of a n of t, so if you look at mean of a n of t, this is 

expected value of a n of t, is expected value of this right hand side, and if you take 

expectation, inside the expectation, now operates on a f (x, tau) and it is specified that the 

mean of f (x, tau) is 0; therefore, mean of n of tau is 0. 

Now, you consider two generalized coordinates a n of t and a k of t and you consider a n 

of t 1 and a k of t 2, and I want now the cross covariance between these two quantities. 

So, here each one a n of t itself is express as double integral; therefore, when you 

multiply these two, we get four integrals here and the integrant will contain the 

expectation of f (x 1, tau 1), f (x 2, tau 2); for this, we have the model, that is, this is 

given by i naught m of x1 delta of tau 1 minus tau 2 delta of x 1 minus x 2. So, the 

integration on a x 1, x 2 tau 1, tau 1 and tau 2. 
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Now two of these integration can easily be done, because there are two direct delta 

functions; one in time 1 in space, so if you do that, I get this double integral 0 to t 2 0 to l 

this product and i naught m of x 2 phi n of x 2 phi k of x 2 d x 2 and d tau 2. Now, if you 

now look at the integration in space, what is this, this actually 0 to l, it can be written as 

m of x phi n of x phi k of x d x; by virtual of orthogonality property of phi n of x, this is 

0, when n is not equal to k. So, what happens is, this will contribute, only when n is 

equal to k, otherwise it is 0, that would mean, the cross covariance between a n and a k is 

0, for n not equal to k and for n equal to k; the auto covariance now of a n of t 1, a n of t 

2 is given by this quantity. And of course, the variance itself given by you put t 1 equal 

to t 2, you get this variance. 
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So, for this excitation, that is this, so-called rain on the roof excitation, the generalize 

coordinates become uncorrelated; if excitation is Gaussian that would mean generalize 

coordinates as stochastically independent. So, the coupling, uncoupling of equations is 

now total in the sense the equation for a n of t does not contain any terms involving a k 

of t, in their mechanical sense, it is already uncouple, but in stochastic sense the 

generalize coordinates a n of t is independent of generalize coordinate a k of t. 
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So, this type of model affords significant simplification in modeling, and that is some 

time exploited, in representing distributed loads like, turbulence and things like that. 

Now, if you written to the moments of displacement y (x, t), again we have to do, the, 

apply, the expectation operator on these expressions. So, expected value of y (x, t) is the 

expected value of this right hand side and that is expected value of a n of t which is 0. 

You now want covariance between response at x 1 and x 2, we get this double 

summation, but we already seen a n of t 1 and a k of t 2 are uncorrelated; so, this collapse 

it to a single integral. And if you are finding variance of the response, it simply, it consist 

of summation of some kind, of sum of variance of individual generalize coordinates; that 

means, in computing variance of the total the beam displacement y (x, t), there is no 

cross terms between contribution from cross terms involving product of a n of t and a k 

of t. This is only true for the case of this rain on the roof type of excitation, it is not 

generally true but many people use that assumption, even when the excitation is not of 

the type, that is the of the type of rain on the roof type of excitation, but that modeling is 

in appropriate. 
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So, we will now consider a slightly more general random excitation, where f (x, t) is a 

random field evolving in x as well as time; it is not a rain on the roof type of excitation, 

but instead we assume that the mean is 0, but the second order moment f (x, t) into f of x 

plus psi t, tau is now uncorrelated in space, but in time it is a stationary random process. 
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Now, the analysis here is reasonably straight forward, we assume y (x, t), again in the 

terms are generalize coordinates and Eigen functions. So, this is given in terms of the 

double integral h n of t minus tau phi n of f (s, tau) d s d tau; so, from this I can compute 

the expected value of the response, and since this is given to be 0, this expected value 

becomes 0. And I can consider the cross covariance, and if we run through this 

integration two of the integration, we have this expected value of f (s 1, tau), f (s 2, tau 

2), and that appears here as a direct delta function in space, but in time, it is r of tau 1 

minus tau 2, earlier we had a direct delta function here again, but now, right now it is 



not. So, one of the integration can be done easily and we from four integrals, we come 

down to three integrals; again by using orthogonality relation of this phi n of s 2, phi k of 

s 2, we can show that, this double summation reduced it to a single summation and this 

triple integral become as a double integral. 
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So, some simplification is possible, but here mind you we are assuming m to be constant 

and c to be constant, that means, the beam problem that I am considering here E I m and 

c are not functions of x, earlier I was including that, when I consider rain on the roof type 

of excitation m was the function of the x and E I was function of a x and c was a function 

of a x. 
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So, with this simplification, again we can get this expression with slightly less amount of 

effort. Now, we already outlined the formulation for response of a beam under time 

dependent boundary conditions. We will now consider the time dependent boundary 

condition to be a random process; so, we will consider now a clamp beam with one of 

the support being subjected to a time function v of t, which is modeled as a stationary 

random process. So, the governing equation is E I y 4 m y double dot plus c y dot equal 

to 0, I am assuming E I m s c etcetera to be independent of x and these are the boundary 

conditions; the excitation v of t appears as a boundary condition and we are assuming 

that system starts from rest; v of t we take it to be such that its mean is 0 and its auto 

covariance is the function of time difference, which is R v v of tau, and associated with 

that, there is a power spectral density S v v of omega. 

 Now, given this question is, what is the statistical properties of beam displacement, what 

is the mean, what is the covariance, what is cross covariance, what is auto power spectral 

density, what is cross power spectral density and so on and so forth. 
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So, since the boundary conditions are time dependent, we implement this transformation, 

this we have discussed just a while before. So, I need not have to go through this, but the 

logic is displayed here, if we do that, we get an equation for the new dependent variable 

w, introduce a new dependent variable w and an unknown, an unknown function of h of 

x, w is unknown, h is unknown, h is selected in a certain manner, such that w becomes 

the governing equation for w, we will have time in variant boundary conditions. 
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So, if you do that, we get the equation for w to be this, E I w 4 m w dot c w dot equal to a 

function of x and t, where h of x is this function, which we derive just a while before. At 

this stage, we have now reduced the problem to a form, which we have just now seen 

how to handle. So, this one, this is one approach of, one approach for handling time 

varying boundary conditions, and on this, we can do now statistics find out mean and 

variance etcetera. 
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Now, there is yet another approach which is valid when support motions are stationary 

random processes, here we do not take the root of using Green’s function, in terms of 

system natural frequency, is normal modes and modeled damping, but we directly solve 

the field equation. To illustrate that, we will consider this problem; again to start with, 

we will assume that, the support displacement is a harmonic function. So, the support 

displacement appears as a boundary condition and this is a linear partial differential 

equation and the excitation source is harmonic; so, as time becomes large, the response 

of the structure also is harmonic, at the driving frequency but with an unknown 

amplitude. 
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 So, with that logic in mind I represent y (x, t) is phi of x into e rise to i omega t. Now, 

phi of x is an unknown function, is not in an Eigen function; we substitute this into this 

equation, we get EI phi 4 minus m omega square phi plus i omega c phi equal to 0 and 

the prescribed boundary condition on y. Now, translates to boundary conditions on phi 

and phi of 0 is 0, phi prime of 0 is 0, phi of l is1, because y (l, t) is phi of l e rise to i 

omega t and this is given to be e rise to i omega t; therefore, phi of l is 1, phi prime l is 0. 

Now, I introduce a parameter lambda to the power of 4 as m omega square minus i 

omega c by E I and this is now an ordinary differential equation with x as the 

independent variable; so, it has this simple solution in terms of sin and cosine functions, 

sin, cosine, sin h and cos h function, this we have seen, when we derived the beam Eigen 

functions, the same form of the solution is relevant here, but except that now we have a 

inhomogeneous boundary conditions; this is not an Eigen value problem. 
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So, a, b, c, d are the arbitrary constant to be determine using this four boundary 

condition; if we do that, phi of 0 is 0, phi prime of 0 is 0, phi of l is 1, phi prime of l is 0; 

so, if we put phi of 0 is 0, a become 0; phi prime of 0 is 0, c become 0; so, a is gone, c is 

gone and I am left to b and d. And I have two more equations, at x equal to l phi of l 

equal to 1, leads to this equation; phi prime of l equal to 0, leads to this equation; and I 

can solve for b and d from this and get an expression for y (x, t), then this form. 
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So, this quantity which multiplies e x p i omega t is nothing but the transfer function, 

right. And this can directly, we use in our random vibration analysis, to find out power 

spectral density of the response and so on and s forth. How we do that we are interested 

in the case, where v of t is the stationary random process, with a power spectral density S 

v v of omega and I am interested in power spectral density function say y (x, t); so, S y y 

(x, omega) is given by this is a basic definition of power spectral density function and for 

y t (x, omega) I use this relation, this phi (x, omega) is nothing but a transfer function 

which we have derived just now.  So, now substituting this into the definition of power 

spectral density function, I get the response power spectral density function to be given 

in terms of this transfer function into the power spectral density function. 
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So, this solution in fact does not involve any model expansion, so more general models 

for damping can be used, but the penalty that you have to pay is you have to deal with 

trigonometric and hyperbolic sin, cosine and sin h, cos h functions. 
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So, we can make some concluding remarks on vibration of continuous systems. Why do 

we study continuous systems? They save us means of first cut models for a class of 

structures like tall buildings, soil layers and line like structures, such as chimneys and 

towers; so, in their own standing, they have certain worth. For certain problems 

continuous models may simplify the problem, for example, continuous models for lattice 

structures such as towers; tower is essentially a lattice structure, but we can represent the 

behavior of a tower by a say a ventilation curve beam and then we can study of a beam 

like a ventilation curve beam, cantilever ventilation curve beam is not easier than 

studying a huge lattice structure. 

Another thing is, if loads are rapidly fluctuating or when high frequency vibration is of 

interest, it may be preferable to use continuous parameter models than discrete models. 

The most important application of continuous system is that, certain problems can be 

solved exactly. This is of educational value and also helps in assessing approximate 

methods of analysis. So, these are some of the reasons, why we study continuous systems 

in practical application, there seldom used, but they serve as very useful models for 

various reasons mentioned here. 
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The limitations of using continuous system models, is that, for each structural type we 

have to develop a model, I have been to taking about Euler Bernoulli beam; so, you have 

to study an axial vibration problem, a beam problem, where Euler Bernoulli beam we 

discussed and if you include shared information and rotary inertia, you have to develop a 

theory for ventilation curve beam. And you want to study an arch, you have to combine 

theory of Euler Bernoulli beam with actual vibration models or if you are interested in 

departures, you have to develop another theory in two-dimensions, you have to deal with 

plane, stress models, plane, strain models, plates, shells and so on and so forth; so, each 

one you have to develop separately. 

Even if you achieve all that built up structures, like building structures, a building 

structure has beams, slaps, may be trusses part of the roofs etcetera; so, it is hard to 

imagine how continuous system models can be used in studying such systems. We will 

end this lecture here; in the next lecture, we will consider problems of reliability, 

analysis of randomly vibrating systems. 


