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We have been discussing random vibrations analysis of discrete multi-degree freedom 

systems. So, we will continue with that discussion and we will be concluding this 

discussion in this lecture, and we will begin discussion on random vibrations of 

continuous systems. 
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So, what we have done till now is that, we have characterized the multi-degree freedom 

system through frequency response function and impulse response function; these 

functions now become metrics. So, for a n degree freedom system, the metrics of 

complex frequency response function is a n by n square matrix; it can be expressed in 

terms of structural matrices as shown here or in terms of the natural frequencies, mode 

shapes and model damping values as displayed here. 

Similarly, the impulse response function here becomes a matrix - a square matrix - of 

size n by n and this is determined in terms of the mode shapes, the damp natural 

frequencies, model damping as shown here. The elements of this complex frequency 

response function matrix and impulse response function matrix are shown here and we 

saw that they form a Fourier transform pair; this is to be expected, because we saw 

similar relations being applicable for single degree freedom systems. The input, output 

relation in terms of a power spectral density function is shown here; S FF omega is the 

matrix of power spectral density functions of the input; input is modeled as a stationary 

vector random process with 0 mean; S FF omega is the power spectral density function; 

H of omega is the complex frequency response function matrix. 

Similarly, the matrix of covariance of the vector X of t 1 and X of t 2 is related to the 

matrix of the input auto correlation function matrix through this relation, where here h is 



the matrix of impulse response functions, t is the transposition, star t is the transposition 

with conjugation. So, this is what we have discussed in the previous lecture. 
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We began discussing about the action of earthquakes on extended structures and we 

started talking about structures under differential support motions. These types of 

structures are typically found as piping structures in say industrial power plants or also 

they are also associated with say long span structures like bridges, dams and so on and so 

forth. The main property here is that the support displacement here varies in space that 

would mean for this structure that is shown here, there are three supports; here, this is 

one support, this is other support and this is third support. And in this illustration, we are 

considering the action of two support displacements at each of these supports; so there 

are six support displacement components. 

And if we use, for example, finite element formulation to analyze this frame structure at 

every node, we can have three degrees of freedom and this we call as the total 

displacement of the super structure. So, the collection of these degrees of freedom is 

encapsulated in the vector u T of t; N g, we call is the number of support displacements, 

for this particular illustration, it is 6, and N is the super structure degrees of freedom and 

in this particular instant, it is 24, because there are 8 nodes 1, 2, 3, 4, 5, 6, 7, 8 and at 

each of this node, there are three degrees of freedom. So, we have N is 24. 
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So, we can write the equations of motion. If you write the global equilibrium equation 

here, the degrees of freedom can be partitioned as the super structure degrees of freedom 

and the support displacement, these are applied support displacements; based on this 

partitioning of the displacement vector, the associated structural matrices can also be 

partitioned so M M g, M g transpose M g g and similarly damping and stiffness matrices. 

P g of t is the reactions due to the support motions at supports and u T is n cross 1; u g P 

g are all N g cross 1, and N T which has the size of these matrices is N plus N g; M C K 

here are square matrices, whereas M g, C g, K g are rectangular matrices and in the 

analysis of this type of system of equations, we first find the so called pseudo dynamic 

response by considering only the static behavior of the system. 

So, if we consider now the static behavior of the system, we call the response as pseudo 

static response so that super script P denotes the pseudo static or pseudo dynamic 

response and the equilibrium equation is as shown here. So, this is the response of the 

structure simply due to the differential support displacements; there is no inertial actions 

or energy dissipation involved here; it is purely a static behavior, but still this this 

equilibrium equation has to be analyzed at every time t therefore, the word pseudo 

dynamic is used to convert this fact. 

So, if we now write the equation corresponding to the first row, I get K into u P plus K g 

into u g is equal to 0; from this I can express u P in terms of K, K g and u g as shown 



here and this matrix K inverse K g minus K inverse K g I call it as capital gamma and 

this is this can be viewed as a kind of a influence matrix. P g of t superscript P is the 

pseudo static component of the reaction that can be obtained from the second row of this 

equation K g transpose u P plus K g g u g is P g t so this has to be found after we solve 

for u P. So, this gives the pseudo static reactions; this gives the pseudo static or pseudo 

dynamic displacements. 
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Now, we split the total response into a pseudo dynamic component and a dynamic 

component. So, moment we substitute this into the governing equations, we can derive 

now the equation for u of t which is the unknown; u P of t has already been determined; 

so the unknown here is u of t. So, if we now look at this equilibrium equation, wherever 

there was u t, I am writing u double dot plus u P double dot as shown here. 

Now, if I write the equation for the first row, I can get M u double dot plus M g into u g 

double dot and m into u P double dot; C into this term plus C g into this term; similarly, 

K into this term, K g into this term will be, I can designate that has P effective t. So, this 

P effective t can be returned in terms of the pseudo static response and support 

acceleration as shown here acceleration velocities. Now, for pseudo static component of 

the response, I write u P is minus gamma u g double dot or plus gamma u g double dot; if 

I do that and rearrange the terms, the effective force gets expressed in this form. So there 

is a kind of mass matrix, which multiplies acceleration; there is a damping matrix, which 



multiplies the velocity; gamma is a kind of influence matrix that arises in computing 

pseudo dynamic response. 

(Refer Slide Time: 08:29)  

 

So, we can just examine the nature of this equation; suppose if M is diagonal that would 

mean M g is 0, because M g is of diagonal component of the mass matrix it is 0 and 

suppose C is proportional to stiffness matrix, in that case I can write this C gamma plus 

C g as say some alpha into K gamma plus K g; now for gamma if I write minus K 

inverse K g we will see that the contribution from the C gamma plus C g becomes 

identically equal to 0 and the contribution from this second term to the effective force 

becomes 0, and the contribution from acceleration terms now read as minus M gamma u 

g double dot of t u, since u g is now N g cross 1 vector, gamma will be a n cross N g 

matrix. 

Now, if all supports receive identical support displacements, then N g will be equal to 1 

and u g double dot t will be as scalar function and gamma would become simply a vector 

of units and this equation reduces to the case of uniform support motion that we 

discussed in the earlier lecture. So, there is a consistent consistency between what we are 

discussing here and what was discussed before. 
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Now, let us now turn our attention to the problem of random vibration analysis and we 

will begin by considering the analysis in frequency domain for steady state oscillation. 

This is a simpler problem in comparison to time domain analysis, where initially there 

will be a transition non-stationary response and if there is a stationarity, it will reach that 

state as time becomes large; if excitation is non-stationary, of course, then we will have 

to deal with the problem in time domain. 

Now, we will assume that u g of t is a vector of stationary random process with 0 mean 

and PSD matrix given by this - S g g of omega - this is the PSD matrix for support 

displacement. Now, if you see the details of this forcing on the right hand side, we do we 

have velocity and acceleration terms; so if we start modeling u g of t in terms of 

displacement power spectral density, then we have to deduce the power spectral density 

for acceleration and velocity and we are ready with that; we know what it is. So, suppose 

P of T is this; now if you now take the Fourier transform of a truncated version of P of T, 

this is given by this; here, now we get Fourier transform of the displacement, although 

we have acceleration here; I will start working with displacements. 

Now, this is the Fourier transform of the effective force and if its conjugate transpose is 

considered, we get this; we have to take transposition and conjugation, we get this 

expression; now if you want the power spectral density, we have to multiply this with 

this and apply this take an expectation and apply this limiting operation. 
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So, if you now do that, S pp of omega is limit t to infinity 1 by t of P T of omega 

multiplied by P T star transpose omega; if I do that and carry out these simplifications, I 

get the expression for S pp of omega in terms of the power spectral density of vector of 

support displacements, the structural matrices and the influence matrix capital gamma. 
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Now, moment I know the power spectral density of this quantity p of T; I can now use 

the standard input, output relation in frequency domain; I get the output power spectral 

density function for u of T; this is a matrix given by h into S pp of omega, which is this 

long expression and H star transpose omega, where H of omega is of course this and in 

terms of M C K and in terms of modes, it is this. 

So, these are reasonably straightforward exercise; so the only issue is you have to handle 

computation of power spectral density function for the effective force. You are given 

model for support displacement and you have to deduce the power spectral density 

function for the effective force and moment that is done, the standard input output 

relations take over and you get the solution. 
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Suppose you are looking at only pseudo dynamic response u p of t is given by gamma u 

g of t therefore, the power spectral density function of the pseudo dynamic response 

component is simply gamma S g g of omega gamma transpose and this is this. So, 

gamma is a here is real value; therefore, there is no need to conjugate and do that; so this 

is the power spectral density of a pseudo dynamic component. So, total response can be 

written as pseudo dynamic component plus dynamic component; so this is gamma u g of 

t plus u of t. Therefore, if you now take that truncated Fourier transform of the total 

response, we get this and if you now express U T of omega in terms of P T of omega, I 

get P T, where P T of omega is already determined; I can derive now the truncated 

Fourier transform of U T T of omega and that is given by this expression in terms of u g 

T of omega. 
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With this, we ready to find the power spectral density function of the total response, 

suppose if I call it as S T T of omega, few matrix manipulations will take us to this 

quantity. You can carefully design that this total power spectral density the power 

spectral density function of the total response would obviously have a component due to 

pseudo dynamic response and dynamic response and contribution from correlations 

between dynamic and pseudo static response. Thus suppose if you compute variance of 

the total response, it will have component from variance of pseudo dynamic response, 

variance of dynamic response plus a contribution due to correlation between pseudo 

dynamic and dynamic responses. 

So, in the design of piping structures in power plants, it is necessary to compute these 

three quantities separately; so we need to know that formulary for to achieving that goal. 
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Now, how about the analysis in time domain? So, we are back to this equation, where P 

of t is a effective force as before; it is in terms of u g double dot of t and u g dot of t, and 

u g of t is vector of stationary random process with 0 mean and auto covariance; we will 

now write it in terms of R g g t 1 minus t 2 this could as will be (t 1, t 2) if it is non- 

stationary, but this is what we are using in this illustration. So, I have P of t 1 is this and 

P transpose of t 2 is transposition of this evaluated t equal to t 2 and I get this. 
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If I multiply these two and take expectation, I will get the covariance matrix for the 

vector random process P of t. So, if I do that, I get R p p of (t 1, t 2) and in terms of the 

structural matrices and cross covariance, auto covariance’s between acceleration, support 

accelerations and velocities, etcetera we get this expression. If input is completely 

specified, it is possible to compute all these expectations and once the auto covariance of 

the input is given, we now resort to the time domain relation for output auto covariance 

in terms of input auto covariance and we get this equation H of t is a matrix of impulse 

response functions expressed in terms of normal modes and natural frequencies and 

model damping as here; so if you plug that in, you have to carry out the requisite number 

of integrations and you will be able to characterize the response. 
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Now, how do we compute these expectations? For example, you have to compute u g 

double dot of t 1 and u g dot of t 2, starting from auto covariance of u g of t. So, if you 

recall, we have shown that auto correlation between N th derivative of X of t and M th 

derivative of X of t is given by this and if the process is stationary, we get this; this can 

as well be generalized to find out this type of covariance. 

So, these are the matrices; each element of this can be for determined following this rule. 

This rule, for example, is applicable for two random processes X and Y, here we can as 

well replace X by Y, and this will become R X Y. So, if there are two random processes, 

we can still use one of these two; if you are in non-transition domain, you have to use 



this; if process is non-stationary you have to use this; if process stationary, you could use 

the simpler version. 
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Again if you look at the total response, it has pseudo dynamic response and a dynamic 

response; the u P of t plus u of t- u P of t continues to be gamma times u g of t. Now, this 

u of t can be given in terms of the impulse response function matrix and this vector of 

effective force, in principal we have got the expression for u P of t and you can take 

expectation of that u t of t, you can take expectation of that you will get the mean; you 

multiply u t of t by its transpose and take expectation, you will get covariance of that and 

so in principal, this is evidently dual. Here, again we can see that variance of total 

response even in transition state will have a variance of pseudo dynamic response plus 

variance of dynamic response and contributions due to correlation between pseudo 

dynamic and dynamic responses. 
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So, this in a way completes the analysis of multi-supported multi degree freedom 

systems, which are which are subjected to differential support motions. Now, we take up 

we move on and consider the problem of random vibration analysis of continuous 

systems. So, we are moving to a new topic, but many features of what we are going to 

discuss now are quite similar to what has been discussed for discrete multi degree 

freedom systems. For instance, the notion of nature coordinates can be generalized to 

continuous systems, the notion of frequency response functions and impulse response 

functions, matrices, here become so call Green’s functions. So, all those concepts are 

easily extendable for continuous systems, but it is worth going through this exercise. 

So, to start with, we can consider a situation, where a continuous system serves as an 

adequate model to model an engineering structure. For example, if you consider a 

chimney, it can well be modeled as a cantilever beam and if it is subjected to, say wind 

load, this is the profile of the wind velocity; at ground, the wind velocity is 0 due to the 

boundary layer effect and as we climb up, it reaches the atmospheric wind velocities and 

this this is again random in nature; so this is snapshot of the wind velocity at a given time 

T. 

But on the other hand, if you look, if you trace the velocity of the wind at a given 

elevation here, as a function of time, it will look like this; this mean this mean 

corresponds to this value and the oscillations takes place here about this mean due to 



turbulence. Now, this structure is immersed in a flow like this; so the due to this flow, 

there will be a pressure field around the object and if you integrate this pressure field 

over this surface area, you get the an effective force and that can be resolved in the 

direction of the flow and perpendicular to that, we call that as this as drag direction; this 

as across wind direction. 

Now, the calculation of this pressure field can become somewhat more involved, if this 

structure is flexible; in which case there will be an interaction between the vibration of 

this chimney and the pressure field around that and this directions also keep changing; 

there will be an effective drag direction and effective across wind direction. In any case, 

the force field around this chimney will be a function of square of this velocity and that 

will be a random process; that evolves in time as well as along the height of the chimney. 

So, if you model this as a cantilever beam, we have to consider that dynamics of a 

cantilever beam our beam, subjected to an external force say F of say (Z , t), where F of 

(Z , t) is a random field which evolves in space as well as in time. Of course, the 

chimney can also be subjected to earthquake ground motion, although I have shown both 

these actions together; it is not implied that the occurring together, not necessary; we 

seldom considering this type of situation, it just for an illustration I am showing. In the 

event of an earthquake, this supporting point here will be subjected to say actually three 

components also you can consider, two horizontal components of support displacement 

and one vertical component of supports displacement. 

So, these again are each component can be modeled as a random process so then we will 

have a continuous systems, where boundary conditions are time varying and their model 

the time variation are modeled as random processes. So, we need to consider if you are 

interested in earthquake response analysis, the behavior of the structure under random 

time varying boundary conditions and if you are interested in wind like situation, you 

have to consider the dynamics of say beams under external forces, which are random 

fields in space and time. So, we will consider how we can tackle with this problem, but 

before we get into the random vibration analysis, we will first review quickly a few 

important results from deterministic analysis of continuous systems. 
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Another example is that of dynamics of a bridge like structure when a vehicle passes on 

the bridge, suppose this is a railway bridge; this can be viewed as a simple model for as a 

locomotive. Because of guide way unevenness, the passage of this locomotive and the 

bridge, there will be complex interaction between the regularities here and the property 

of this vehicle and the effective force that get transmitted - the wheel force that get 

transmitted - to the structure will be a random process and if this also another example of 

random vibration of a continuous system, where the bridge to a first approximation can 

be modeled as a beam. 

Of course, this is a hybrid problem, where the vehicle is modeled as a discrete system 

and bridge is modeled as a continuous system; this is one of these archetypal models for 

studying vehicle structure interaction. In the context this problem, of course there can be 

other sources of uncertainties, for example, the vehicle velocity and acceleration could 

be changing, they can be random; the vehicle payload that is M, this mass itself can be 

random and of course, the damping and spring elements could also been uncertain in 

nature. Not only that, at any given time, there can be more than one vehicle on the 

structure; if it is the highway bridge, if you take the snapshot of the bridge aerial 

photograph of the bridge, you will see that vehicles will be randomly distributed in space 

within the bridge and there will be moving in random directions, if there are eight line 

traffic for example; the direction of direction and velocity of moment also will be could 



be random. So, it is a very complex loading system and if we model this traffic also as a 

random process, then we have additional complexities. 
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So, we will begin this discussion by conducting a quick review of dynamics of 

continuous system under deterministic excitations and I select Euler - Bernoulli beams as 

an representative of this continuous systems; this could as well be a actual vibrating rod 

or shear deferming soil layer, a plate or cell. So, we will begin this discussion now; we 

will first consider the equilibrium equation for a statically loaded beam, this if a beam 

property varying with respect to space, the beam structure considered is shown here; this 

E I is the function of x, and q of x is the external load, the equilibrium equation is d 

square by d x square EI of x d square y by d x square is q of x, and the specified 

boundary conditions here, this corresponds to not to this beam, it actually corresponds to 

a structure which is clamped here and hinged here. 
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This is one example that I will be considering to illustrate the concepts; so we will 

proceed with this. Now, if the same structure is known loaded dynamically, that means, 

if this forcing function is a function of both x and time, in addition to the elastic forces, 

we also have now inertial forces and forces due to energy dissipation. So, this is the 

inertial force and the there are the damping force are represented at two places; this is 

one term and there is a another term here; this is a damping force, which is proportional 

to the velocity of the beam; on the other hand, this is the force, which is proportional to 

the time derivative of the bending strain. 

So, the general damping model could have terms proportional to displacement and 

proportional to proportional to velocity and proportional to velocity of the strain; so we 

have included for the sake of illustration these things. Again for this structure, that is that 

of a proper cantilever, the boundary conditions or displacement is 0, here and here slope 

is 0 and bending moment at the hinged end is 0 and the structure could start with certain 

initial displacement and certain initial velocity. 

So, this is their field equation; this is valid for any boundary conditions, it can be a 

simply supported beam, free beam, fix beam, etcetera the field equation would remain 

the same. What would distinguish different beams types would be the boundary 

conditions and together with the initial conditions, this forms the governing equation of 

motion. So, this is now a partial differential equations -a fourth order partial differential 



equation with y of x as the dependent variable; x and t as independent variables; so we 

need to develop a strategy to solve this equation. 

So, we will try to now explore based on our experience with dealing with discrete multi-

degree freedom systems, we will try to see now if we can perform a transformation of 

dependent variable and introduce certain new generalized coordinates such that in the 

new coordinates system, this partial differential equation could become a set of uncouple 

ordinarily differential equation, that set will now be countably infinite; it would not be 

finite as in discrete multi-degree freedom systems. This type of systems are also known 

as distributed parameter systems in the sense, if you take any chunk of the beam, it has 

elastic property; it has inertial property; it dissipates energy unlike in discrete multi-

degree freedom systems, where we used the mass and spring and a damper, the mass 

element stored only kinetic energy; it had only inertial properties, there was no potential 

energy or stiffness here and so on and so forth. So, they are always known as distributed 

parameter systems. 
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So, as in the case of discrete multi-degree freedom systems, we begin by considering the 

undamped free vibration analysis. So, this is the equation for undamped free vibration 

analysis and we seek a solution in the form phi of x into T of t. So, this is the variable 

separable form that we are trying to see, we are not sure if this is the possible; we have to 

first establish that such solutions are possible. We substitute into this I get e i phi double 



prime double prime T of t phi of x m of x T of t is equal to 0; here prime denotes 

derivative with respect to x and dot denote derivative with respect to time; so t double 

dot of t is dou square T by dou T square. 
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Now, if you divide both sides of this equation phi and T, we get and performs some 

simplification; we can express this equation as on the this part of the equation, we have 

function quantity, which are functions of x alone; this is part of the equation, where we 

have quantity, which are functions of time alone. The variable separable form of this 

solution requires that these two ratios should be equal. 

Now, since this is function of x alone, if I change x, only this quantity can change and 

this cannot change; similarly, if I change T alone, only this quantity can change only this 

quantity can change this cannot change. Therefore, if these ratios have to be equal for all 

x and T, they have to be independently equal to same constant and if we now take that 

constant as omega square, I get for T of t as solution a cos omega T plus B sin omega T, 

and for phi of x, I get an equation as displayed here. This phi of x is now that dependent 

variable, which is now function of only space variable x; so these are all ordinary 

derivatives. Now, so the boundary conditions on y can now be expressed in terms of 

boundary conditions on phi y of (0, t) is 0. Therefore, phi of 0 into T of t is 0; if that has 

to be true for all t, phi of 0 must be 0; similarly phi of l is 0, phi prime of 0 is 0 and 

bending moment EI d square phi by d x square at l equal to 0. 
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So, we get now a fourth order ordinary differential equation in phi of x along with the 

associated four boundary conditions; so this is displayed here. You can see here that phi 

of x is a solution phi of x equal to 0 is a solution, because you substitute phi of x equal to 

0, this equation is satisfied and all the boundary conditions are satisfied; this is true for 

any value of omega. Now, trivial solutions are of no interest to us; so we seek now the to 

answer this question, can phi of x naught equal to 0 be a solution to this, for some values 

of omega. So, this is statement of the Eigen value problem; now the operator is not a 

matrix operator, but differential operator. 

So, to discuss this further, to keep the analysis somewhat simple, we will consider E I of 

x to be E I; m of x to be m, that means, the beam is homogenous and if I now substitute 

make this simplification here, I can write this E I phi 4 minus omega square M phi equal 

to 0 and if I divide both sides by E I and denote lambda to the power of 4 as m omega 

square by E I, I get this equation and this equation can be solved. So, you can assume phi 

of x to be phi of x can be assumed to be E raise to S x. So, the characteristic equation 

will be S to the power of 4 minus lambda to the power 4 equal to 0; so we get four roots 

S is plus minus lambda plus minus I lambda; so associated with plus minus lambda, you 

have sin h and cos h functions; with I lambda, you have sin lambda x and cos lambda x 

function. So, for certain reasons, which will become apparent, we will write they now the 

solution in terms of the function cos lambda x plus cos h lambda x; cos lambda x minus 

cos h lambda x and similarly, sin lambda x plus sin h lambda x and sin lambda x minus 



sin h lambda x; a, b, c, d are the four constants that we have to determine by using these 

four boundary conditions. 
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So, to implement the boundary conditions, I need phi prime and phi double prime; so a 

simple differentiation of phi of x, once, leads to this equation; twice, leads to this 

equation. Now, imposition of boundary condition; now phi of 0 is 0 and phi of l is 0; so 

phi of 0 is 0 means, if you now look at phi of x equal to 0, this will be nonzero, but all 

other terms are 0 at x equal to 0; therefore, I get a equal to 0 that is the particularly the 



advantage of writing the complementary function in the form that we have done; phi 

dash of 0 is 0; therefore, I get c equal to 0. So, I am left with now two constants b and d 

and to determine them, I use the condition phi of l equal to 0 and phi double prime of l 

equal to 0, and this leads to two equations, which are linearly b and d and this can be put 

in the matrix form as shown here for b and d here, and for non-trivial solutions of b and 

d, the determinant of this coefficient matrix must be equal to 0 and that leads to an 

equation known as characteristic equation. And in this particular case, you have tan 

lambda l equal to tan h lambda l as the characteristic equation, and if you solve them, 

you can get infinite set of roots this a transcendental equation therefore, there can be 

infinite set of solutions and these are known as characteristic values. 

Associated with each characteristic value, there will be an Eigen function and that is 

displayed here and sigma n is the constant that appears here is this. type of the These are 

the mode shapes for in this case of propped cantilever beam, but similar expressions for 

various types of single span beam like simply supported beam, free beam, both sides 

clamp 1, end free other end clamp, etcetera there widely studied there are all catalog in 

text books. 
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So, for this particular case we get these constants C n and sigma n to be this, based on 

which we can construct the motions. If the beam is simply supported, the solution is 

somewhat simpler ; the natural frequencies are given exactly by this and the mode shapes 



are harmonic in space; I leave this is an exercise for you to prove this. And if you plot 

the mode shapes for different value of n on x-axis, I have the span of the beam x by l 

normalized and here, I am plotting the mode shape for n equal to 1, I get this red line; for 

n equal to 2, the blue line; n equal to 3, the green line and so on. 

For the case of propped cantilever, the mode shapes can be sketched here; the first mode 

will be like this; the slope and the value of the displacement will be 0 that means the 

beam oscillates in this form in the first mode. 
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The second mode will be something like this; so you can construct this mode shapes for 

higher model values also. Now, again taking q from orthogonaility relations of eigen 

vectors that we encountered in dealing with discrete multi-degree freedom systems, we 

can now consider the question of do these eigen functions satisfies any orthogonaility 

relations? To see that, we consider 2 modes n and k and consider the eigen pair omega n 

and phi n and omega k phi k and as per our formulation, the eigen pair should satisfy 

these two equations. So, what I do is, I multiply equation 1 by phi k and integrate from 0 

to l and multiply equation one by equation 2 by phi n and integrate from 0 to l, so I get 

this at end of that exercise, I get these pair of equations. 
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Now, if you now look at the integral that appears on the right hand left hand side, if you 

do integration by parts, we can integrate once; I get 0 to l E I phi k double prime; double 

prime becomes E I phi k single prime; phi k remains as it is, then phi n, I have to now 

differentiate this phi n phi prime E I phi k double prime d x. Now, if I carry out this 

integration once more, I get this expression; this simplifies to this and then, I get this 

integer. 

Now, if you look at the nature of this integral for typical boundary conditions like a 

hinged end, a clamped end, free end and sliding end, we can see that for example, if you 

consider hinged end, the displacement will be 0 and this quantity E I phi k double prime 

will not be 0; if you raised displacement, you get a reaction and this reaction is a shear 

force. In a clamped end, the same is true; phi k is 0, there will be a reaction shear force; 

how about the free end? Displacement is not 0, but this quantity E I phi k double prime is 

0, because there is no shear force at the free end. 

So, we see that the terms inside these two braces would cancel out, become 0 for any of 

the boundary condition that where typically interested in modeling single span beams. 

So, this integral therefore, now simply becomes only this; this become 0; this become 0; 

I am left with only this. Now, we analyze this similar analysis will lead to a similar 

simplification for the second integral also. 
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Now, based on that, we can show that phi n double prime of x and phi k double prime of 

x into E I of x integral 0 to l is 0, for n not equal to k; and m of x phi n of x phi k of x d x 

equal to 0 for n not equal to k; these are the orthogonaility relations satisfied by the eigen 

functions. Now, this this second equation is similar to phi transpose m phi being diagonal 

and this is similar to phi transpose k phi being diagonal for discrete systems. This 

transposition and addition are now of course replaced by integrations. So, in terms of 

mathematical content, these two are quite similar. 
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Now, what is the use of finding undamped normal modes and natural frequencies? they 

should facilitated That should facilitated us to carry out forced response analysis. So, let 

us consider the problem of forced response analysis under specified initial conditions and 

specified boundary conditions; this epsilon x is now a constant that appears in modeling 

strain rate dependent damping and c of x is the functions that appears in modeling 

velocity dependent damping. We assume y of x comma t as n equal to 1 to infinity a n of 

t phi n of x; now phi n of x are mean; now at this stage these are known; so these are 

unknowns and these are the generalized coordinates; this phi n of x are the eigen 

functions that we just now determined and these satisfy these two orthogonaility 

relations, with one with respect to E I and one with respect to m. 
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So, E I is the function of x; m is the function of x that is what is implied when we write E 

I inside this integral and m inside this integral. So, we substitute now this into the 

governing equation this equation into the governing equation and I get the equation 

shown here. Now, for E I phi n double prime double prime that appears here, I will write 

it as m omega n square phi n, because that is what is the definition of phi n of x; this 

epsilon x into phi n double prime write now I am retaining as it is; c of x is retained as it 

is; m of x is this and this is f of (x, t) external force. 

Now, as we discussed during while discussing multi degree freedom system discrete 

multi-degree freedom systems, we saw that the c matrix need to be restricted; so the phi 



transpose if phi is diagonal. So, similarly, here one of the models was c equal to alpha m 

plus beta k. Now, this part of the model can be easily generalized to beam problem by 

considering this c of x, which appears here as alpha into m f of x. This part of 

simplification can be extended generalized to continuous system by assuming that this 

function epsilon x is some nu into E I of x. 
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So that we will be able to now use orthogonality relations, even for terms involving 

epsilon of x and c of x how that happens? So, I will now write for epsilon of x and nu 

into E I of x; therefore, it is here and this itself is now equal to m omega n square phi n, 

because E I of x phi n double prime is m omega n square phi n and this alpha m x 

remains as it is. Now, this is the equation that we need to tackle further. 

So, what we do? I multiply by phi k of x and integrate from 0 to l; if you now do that, I 

get these integrals- first term is m phi n is already there, m of x phi k phi n d x plus nu 

into a n dot omega n square m of x phi k phi n d x; similarly, this c of x is actually alpha 

into m of x, this remains as it is; this is a n double dot of t m of x phi k phi n and the right 

hand side, I have 0 to l phi k of x f of (x, t) d into d x. 
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So, this will be a function of time alone and now, I can use orthogonaility relations with 

respect to m, this is equal to 0, for k not equal to n; this is also 0, for k not equal to n; this 

is 0, for k not equal to n; similarly, this is 0, for k not equal to n. So, only the case of k 

equal to n would remain and I get the equation m n a n double dot plus some m n alpha 

plus nu omega n square a n dot plus m n omega n square a n is p n of t; so where m n I 

have not mass normalized; so we will have to use this m of x phi n square of x d x. If the 

Eigen functions are mass normalized, m n will be equal to 1; write now we have not 

done that, so we are just leaving it as it is. 
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So, for the generalized coordinates, I get this equation n equal to 1, 2 to infinity. So, this 

can be cost in the standard form by writing alpha plus nu omega n square as 2 eta n 

omega n. So, this is the family of single degree freedoms systems with n running from 1 

to infinity and we know how to tackle them. We still need to find out the initial 

conditions to be applied to a n of t; so to do that, I have this y of (x, t) a k of t phi k of x; 

so if you evaluate this at t equal to 0, I get a k of 0 phi k of x. 
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Now, I multiply both sides by m of x into phi n of x and integrate from 0 to l; so on the 

right hand side, I get m of x phi n of x y of (x, 0); on the right hand side, I get a n of 0 

into m n; this m n should be here; this must equal to 0. So, a n of 0 is determined; a n dot 

of 0 is determined and we are now into business, because we have now uncoupled the 

equation; we have find out the initial conditions; so I can integrate this. We know now, 

what we know for single degree freedom system has to be applied for a long number of 

times and we get that solution and this is the final solution. This is the displacement 

field; moment I know the displacement field, I can differentiate this; you want theta, that 

is, the slope is dou y by dou x; you want bending moment, that is, E I dou square y by 

dou x square; you want shear force, it is dou by dou x of E I dou square y by dou x 

square. So, once y is known, I can find out all this and once you know bending moment, 

you can compute the bending stresses; if you know shear force, you can find out the 

shear stresses; if you want principal stresses, you can do the analysis of state of stress at 

any point of the beam; find out principal stresses, principal directions and you can check 



if failure criteria like avon mises failure or maximum principal stress failure criteria, 

etcetera or you know violated or not. So, you can do any engineering analysis that is of 

interest to you. 
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Now, I will consider a few simple problems; suppose we consider undamped simply 

supported beam carry carrying a u d l, suppose the load is suddenly removed, how does 

the structure vibrate? So that means, I have a beam, which is carrying some u d l and it 

has deformed now and this is the equilibrium equation for that and now, I suddenly 



remove the load; so this structure would has to oscillate and that oscillation is essentially 

due to this prescribed initial conditions. The initial displacement profile is due to the 

applied load q and for t positive that load does not exist; therefore, the structure oscillates 

and we assume that t equal to 0, the beam velocity is 0. So, we can we can assume the 

model solution as it is; these are the equations. Now, we are considering undamped free 

vibration. 

So, a n of t is given by this and initial conditions we have to utilize to find out this a n 

and b n initial velocity is 0; therefore, a n dot immediately goes to 0; so b n becomes 0 

and I am left with only a n and these a ns can be found out by, you know substituting this 

solution into the governing equation for y naught and with a little manipulation, you can 

find out all the a ns and y of (x, t) is given as here. A simple problem you try it out, it 

will teach you some simple things very fast. 
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Another problem somewhat similar surrounding; now, a u d l is suddenly applied on an 

undamped simply supported beam, determine the ensuing vibrations. Assume that the 

beam is at rest at t equal to 0, that means, some imagine some say cement bag or 

something falls on a beam and beam vibrates; so it is a suddenly applied load, we use u 

site step function q u of t and we initially the system is at rest. So, I have given a few 

steps here, you can run through this and show that y of (x, t) is indeed given by this. So, 

this is an exercise that you have to complete. 
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I will briefly touch upon another strategy to solve continuous systems. So, to do that, we 

will consider a soil layer, suppose this is a bedrock and this is soil layer characterized by 

shear modulus, mass density and some damping parameters and this is the ground level; 

suppose at the bed rock level, I apply a unit harmonic displacement and I would like to 

know what is the amplitude of displacement at the ground level. right So, this ratio is 

known as amplification factor and if we are close to resonance, this amplification factor 

can be high and this is of a fundamental interest in earthquake engineering problems to 

allow for local site conditions, so we need to perform the wave amplification studies. 

So, this is a simple model; suppose you assume that this soil layer behaves as a shear 

beam; you recall when we discussed Kanai Tajimi power spectral density function 

model, I replace this soil by a single degree freedom system; now I am refining that 

model and I am replacing this soil layer by shear beam, that means, the beam that 

oscillates in this manner; u is the displacement and this is the equilibrium equation and I 

have assuming damping in a certain form. With boundary conditions now, on 

displacement as shown here; the top edge is the free from applied tractions; therefore, the 

strain should be 0; so this is the boundary condition at the ground level; this is at the 

bedrock level. 

How do we solve this problem? We cannot directly use the model decomposition method 

here, because to apply model decomposition method, we need boundary conditions 



which are not functions of time. this is this is the boundary condition the Here boundary 

conditions is a function of time therefore, we cannot use the eigen function expansion 

directly. There is a way to introduce a transformation of dependent variables to make the 

boundary conditions independent of time in the transform domain and then, subsequently 

apply normal mode expansion method, that I will considering in the next class. 

But now, we will consider a solution to this problem in a using a slightly alternative 

approach. This is a linear system and it is receiving input that is harmonic; so any 

response quantity is going to be harmonic in steady state at the driving frequency, that is 

one of the important properties of linear systems. 
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So, consequently what I assume is u of (z, t) is some phi of z into exponential i omega t; 

this phi of z is the amplification factor dependent on z, it is the space and frequency 

dependent amplification factor. Now, I can substitute the assume solution, phi of z is 

unknown now, we substitute here, I get this equation phi double prime g plus i eta omega 

rho omega square phi equal to 0 and if I now introduce notation lambda square is rho 

omega square divided by this, I get an equation here; mind you the initial the boundary 

conditions here are phi of 0 is 1; phi prime l is 0. 

So, this is not an Eigen value problem; omega is a given driving frequency and the 

boundary condition here is non-homogeneous. So, this is not a eigen value problem, it is 

simply you have to found out the response; response phi equal to 0 is not solution to this, 



because phi equal to 0 will not satisfy this boundary condition; so this is not an Eigen 

value problem, although it has some resemblances to the what we discussed earlier. 

So, we put phi of z is a cos lambda z plus sin lambda z. We have a phi of 0 phi of 0 is 1 

and phi prime l equal to 0 based on that, I get phi of x has cos lambda z tan lambda l sin 

lambda z. 

(Refer Slide Time: 55:16)  

 

Now, if you want now solution at x equal to l that is at the ground level, I get 1 by cos 

lambda l and if I now substitute for lambda l, I get this and where this nu star is the shear 

wave velocity complex valued shear wave velocity, because it includes effect of damping 

under the driving frequency; we have got the amplification factor. Because at the 

bedrock level, the applied amplitude is unity and phi of l therefore directly represents the 

amplification factor. 
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If you plot phi of l as a function of frequency, the amplitude of phi of l you see that, it 

has this characteristic behavior, where there are several peaks, which are uniformly 

spaced and these are the nothing but the points, where these peaks occur are nothing but 

the natural frequencies of the soil layer. In Kanai Tajimi power spectral density model, 

we included only this part; we had a single degree freedom model; so this can be viewed 

as a as a preparatory step towards developing a Kanai Tajimi power spectral density 

model, where soil layer is taken as continuous system than as a single degree freedom 

system. 

We will stop this lecture here and we will continue with discussion on beams in the next 

lecture. 

 


