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We are discussing random vibration of discrete multi-degree freedom systems, that is, 

multi degree freedom system with finite degrees of freedom. So, in the last class, we 

looked at the nature of equations of motion for multi degree freedom systems, and we 

noticed, that many cases or in almost all cases, the coordinates would be coupled and the 

coupling between coordinates is manifest as one of the one or more of the structural 

matrices being non-diagonal in nature. 

We showed that through a transformation, we can remove this coupling, that means, we 

can diagonalize the structural matrices using the matrix of Eigen vectors associated with 

K and M matrices, that helped us to define to notion of normal modes and natural 

frequencies. And these normal modes, had an interesting property, almost useful 

property, namely the orthogonaility property, that helped us to uncoupled the equation of 

motion. And we had a problem in dealing with damping matrices, because the model 

matrix derived from undamped free vibration analysis, would not uncouple the damping 

matrix unless damping matrix is of a certain kind. 

So, we assume that, the damping matrix is that we are going to consider are such that the 

undamped normal modes uncouple the equations of motion in presence of damping. 

Towards the end, we also derived the input output relations in the frequency domain. So, 

will continue from here; we will spends some more time on input output relations in time 



and frequency domains for deterministic excitations and then, analyze the response of the 

system for random excitations. 

(Refer Slide Time: 02:09)  

 

Now, let us consider a multi-degree freedom system with s-th degree of freedom driven 

by an unit harmonic force, that means, I consider the equation of motion to be in the 

form M X double dot plus C X dot plus K X equal to F into e raise to i omega t; this F is 

a vector, whose entries are 0 except for the s-th entry, which is 1. So, we call X r s of t as 

response of the r-th coordinate due to unit harmonic driving at s-th coordinate. So, we are 

interested in steady state response. So, the question that we are trying to answer now is 

what would be the response at say r-th degree of freedom as t tends to infinity when we 

are driving the system at s-th degree using an harmonic excitation. 
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So, we can start by assuming that the response of the system remains harmonicated 

driving frequency; so we can assume that as t tends to infinity, x of t is some x naught 

into e raise to i omega t; this would make X dot as X naught i omega e raise to i omega t 

and similarly, acceleration is derived as shown here. So, if you now substitute this into 

this equation- the governing equation - so I get this is the acceleration term; this is the 

damping term; this is the stiffness term; this is the driving term. So, if we rearrange, we 

get this equation, where we get a matrix now minus omega square M plus i omega C plus 

K into X naught into e raise to i omega t equal to this; e raise to i omega t cannot be 0. 

So, from this, we conclude that this matrix into X naught is equal to F. 

So, this reassembles the equilibrium equation that we get in static problems like, X equal 

to p except that, the stiffness matrix here is now function of damping matrix and the 

mass matrix and also it has a frequency parameter appearing here and it is complex 

valued. So, this matrix, we call it as dynamic stiffness matrix; it is analogous to the static 

stiffness matrix; the prefix dynamic converts the fact that, the matrix is function of 

driving frequency, damping matrix and mass matrix. 
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So, we can get X naught by inverting this dynamic stiffness matrix that is the direct 

approach or we can try to see if we can diagonalize this matrix. So, to do that we assume 

X of t is X naught e raise to i omega t and for X of t, I use the transformation phi Z of t, 

where phi is the matrix of Eigen vectors. So, X of t is phi of Z naught e raise to i omega 

t; so this phi matrix has this orthogonaility property, namely of phi transpose M phi i and 

phi transpose K phi is a diagonal matrix with the diagonal entry being the square of the 

natural frequency. We also assume that C is classical, that would mean phi transpose C 

phi is also diagonal we and we denote the diagonal entry in the form 2 eta n omega n. 

So, we substitute this into this equation now and we used orthogonaility property; we 

pre-multiply by phi transpose; so we get this. Now, by taking phi inside here and phi 

transpose inside here, I get this as minus omega square phi transpose M phi plus i omega 

phi transpose C phi plus phi transpose K phi into Z naught is now phi transpose F. Now, 

phi transpose M phi is diagonal; it is an identity matrix, because that is how we have 

normalized the model vectors and phi transpose C phi I have written as capital gamma; it 

is a diagonal matrix with diagonal entry being 2 theta n omega n capital lambda is again 

diagonal, the diagonal entry being omega n square. 
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So, this matrix is now diagonal; so we can easily invert it; this is straight forward 

exercise. So, if we now write in long hand, so if I now consider the n-th element in this 

vector Z naught, it will be given by phi transpose N of k divided by the diagonal entry in 

this dynamic stiffness matrix in the transform coordinates system; so I get this 

expression. Now, the numerator here can further be simplified, because we have taken F 

to be such that, all the entry except the s-th entry is 1. So, therefore, this summation 

really contributes to only one term and that is when K equal to s, F K is 1 so I get here in 

the numerator simplify s n. So, Z 0 n is given by this; Z this prefix 0 subscripts 0 

indicates that we are talking out amplitude Z of t and n is the contribution from the n- th 

mode. 

So, now, we can write the expression for response in the original coordinate system. So, 

as t tends to infinity, I have response as phi Z naught e raise to i omega t. Therefore, if 

you take now the r-th element, it is given by the summation n equal to 1 phi r n Z 0 n 

exponential i omega t; for Z 0 n, I have just now derived this expression; so if I plug it 

here, I get this expression and if you now look at the amplitude of the response here, I 

can write it has H r s of omega and that H r s of omega is now displayed in terms of a 

model summation. 
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This is quite different from considering the inverse of this matrix and looking at the r s- 

th element. This is a Brute forced inversion, whereas here it is done using the normal 

modes. So, I have X r s of t is given by this term multiplied by e raise to i omega t; so 

this is our frequency response function. So, H r s of omega means response at r-th degree 

of freedom, when s-th degree of freedom is driven harmonically at omega unit harmonic 

driving at s-th coordinate. So, you can see here that X r s of t is same as X r of t; this 

known as reciprocity relation is a kind of symmetric that we expect in these problems; 

this frequency response function is also symmetric. If I now assemble all these H r s of 

omega for r equal to 1 to n and s equal to 1 to n in a square matrix, we can call this 

matrix as matrix of frequency response functions. 
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It is symmetric, but it is not Hermitian, that is, H r s of omega is H r Hs r of omega; it is 

not a conjugate of that. Now, we have two representations for H of omega: one is the 

direct inversion of the dynamic stiffness matrix or in terms of the model summations. 

The direct inversion of stiffness matrix appears conceptually simple; there is no 

coordinate transformation you have to simply invert a matrix, but it is computationally 

difficult to implement; in computation will seldom like to invert matrices. So, this is not 

a preferred way of computing frequency response function. The calculation frequency 

response function as a summation or model contribution is computationally easier to 

implement and an important feature that we have to notice here is that this model 

summation, although it is written as n equal to 1 to capital M, it is not necessary that we 

need to include all the modes in our calculation. 

In many applications, the first few modes contribute significantly to the response and we 

can actual ignore the contribution from higher modes or apply correction for that for 

ignoring and I will take up that issue later in the course. But right now what is important 

to notice that in this summation, we need not include all the modes, in fact it is not 

advisable to include all the modes, because when you make discrete models for 

continuum problems using say finite element method or any of the method of residuals 

the accuracy of higher modes are much less in comparison with accuracy of the lower 

modes. So, there is no reason why we should include all the modes. In a model with say 

n degrees of freedom, we can trust only one-tenth of the modes, typically is a thumb rule 



so in that sense, summing our all modes is a formal representation in it is seldom down 

in actual practice. 
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Now, to see simple example illustration of what we discussed, suppose we consider a 

three degree freedom system, suppose if I drive the first degree of freedom harmonically 

as e raise to i omega t, now I have X r X r s of t is H r s omega exponential i omega t; 

suppose I consider now response, these are all steady state response; so x 1 of t, I call it 

as capital X 11 of t, which is written as H 11 of omega e raise to i omega t this means 

that, I am driving at the first node and measuring the response at the same node; x 2 of t 

in this case will be X 2 1 of t, because I am measuring response at 2 and driving at 1. 

Similarly, this is X 3 1 of t; so this is a matrix of the frequency response functions and to 

construct these elements, you need to do this exercise of driving each of the degree of 

freedom harmonically and finding out the response at all other DOFs and assembling the 

solution that you get. For each one of such calculations, you would be able to fill up one 

row and one column of the frequency response function. 
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A simple numerical example, we consider a three storey building frame; we use shear 

frame model, that means, we assume that slabs move parallel to each other, resembling 

shared information, this move like slices of bread and the harmonic displacement. So, we 

are interested in dynamic of this frame basically in horizontal direction in it is one plane. 

So, given that we can simplify we can make a simplify model for this structure in a three 

degree freedom system, where this M 1, M 2, M 3 are respectively the masses of these 

three slabs; we assume the slabs are plot more heavier than the columns and the 

contribution to stiffness is made essentially by columns, because we assume that the 

slabs are infinitely rigid in their own planes. 

So, K 1 would be for example, 2 into 12 e i by l q; K 2 will be similarly 2 into 12 e i by l 

q and so on and so forth. So, I have suggested some numbers, e i is a flexural rigidity of 

each of the columns, it can be taken as this number and another data that we have is that 

damping is 3 percent for all the modes means the three modes that are possible in this 

model. So, we can draw the free body diagram for M 1, M 2, M 3 and represent all the 

forces; so we can setup the equation of motion by summing the forces in horizontal 

direction and we get three equations. 
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These are the three equations and we can arrange this in matrix form; this is a mass 

matrix; this is a stiffness matrix; we can see that mass matrix is diagonal, stiffness matrix 

is fully populated and it is non-diagonal it is symmetric; mass is also symmetric. 

So, we can now consider the Eigen value problem associated with this K and M matrices 

and the characteristic equation in this case is given by this, omega square as square of the 

natural frequencies and if you expand this determinant, you get a sixth order polynomial 

in omega or a cubic polynomial in omega square and if you solve this equation, we get 

three roots displayed here and associated with each of this Eigen values, I can compute 

the Eigen vectors; this is the first Eigen vector; this is the second Eigen vector and this is 

the third Eigen vector. 
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This matrix 5 matrix is now normalized with respect to mass matrix and based on the 

value of damping given as three percent for all the modes, we can construct the C matrix. 

So, we are given gamma as gamma n n is 2 eta n omega n and I have phi transpose C phi 

as gamma; so gamma is given. So, from this equation, we can compute gamma. Brute 

force method would be C will be phi transpose inverse gamma phi inverse. Actually we 

can avoid inverting the model matrix by using orthogonality; I would not get into those 

detail it is possible, you can see the discussion in the book by clough and penzien 

structural dynamics. 

Many case we can get the C matrix; we need C matrix if you are going to compute F r f 

by direct inversion of the dynamic stiffness matrix; otherwise, this matrix need not be 

computed we can directly use the etas and compute the F r f purely by manipulating the 

expressions in the transformed domain. So, this is the c matrix is provided for sake of 

completion; the c matrix again is symmetric and fully populated. 
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If you carry out the numeric, this is plot of H 1 1 of omega; the elements of frequency 

response function functions are elements are F r f matrix of complex value; so I would 

displayed here the absolute value and the phase. So, x-axis shows their frequency and 

this is the amplitude of the frequency response function and we see that it peaks at the 

three natural frequencies, which we have computed and this is the phase angle associated 

with this F r f. 
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So, in multi-degree freedom system say with three degrees of freedom, there are three 

regions, where resonance can occur; this is in contrast with single degree freedom 

system, where there can occur one resonance. This is plot of H 1 3; this is amplitude; this 

is the phase; this is for H 1 2 of omega this kind of gives an idea how this functions look 

like. We can now consider the problem in time domain; instead of, driving harmonically, 

we can now apply impulsive forces. 

Suppose, I now consider say multi-degree freedom system with s-th degree of freedom 

driven by an unit impulse force, so the equation would M X double dot plus C X dot plus 

K X into F of delta of t, where delta of t is a direct delta function and this F is a vector; 

this is a vector, whose elements are all 0 except the s-th element, which is unit. So, again 

we denote X r s of t as the response of r-th coordinate due to unit impulse driving at the 

s-th coordinate. So, this analysis is quite similar to the analysis that we just completed in 

frequency domain, except that now instead of applying harmonic excitation, we are 

applying and unit impulse. 
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So, we have to here we have to conduct transient analysis and steady state system goes to 

0. So, what is what is of interest here is the transient response. So, here again we make 

the transformation X of t is phi Z of t, where phi is the model matrix having this 

orthogonaility properties phi transpose M phi is i and phi transpose K phi is lambda and 

C is again taken to be classical with phi transpose C phi being a diagonal matrix as 



before. Now, I substitute this into this, I get this equation M phi Z double dot plus C phi 

Z dot plus K phi Z is equal to F delta of t; I pre-multiply now by phi transpose I get this; 

these matrices, these are the mass stiffness matrix in the transform coordinate system; 

this a generalize force in the transform coordinate system; this phi transpose M phi is an 

identity matrix, because that is how we have would normalize the model matrix; this is 

phi transpose C phi is gamma Z naught Z dot and phi transpose K phi is capital I. 
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So, these equations are now uncoupled, so I can take up individual equations and try to 

solve them. So, if I now consider the n-th equation, I get Z n double dot plus 2 eta n 

omega n Z n dot plus omega n square Z n is summation j equal to one to n phi j n f j 

direct delta of t. Now, this f j is 0, except for when j equal to s when it is unity; therefore, 

this will contribute only when j is equal to s and I get this expression. 

So, this is system, where assuming the system is starting from rest. So, consequently now 

Z n of t is obtained has phi s n by omega d n exponential minus eta n omega n t sin 

omega D n t, because the response of this system to unit impulse response is H n of t; so 

it is scale version of that multiplied by this and we get this. Now, if you return to the 

physical coordinates, X is equal to phi Z and look at the r-th coordinate, this says 

summation N equal to 1 to n phi r n Z n of t; for Z n of t, I will substitute this and I get 

this expression. 



So, this is the response of r-th coordinate due to a unit impulse applied at s-th coordinate; 

so it is generalization of notion of impulse response function for a multi degree freedom 

system; this is now expressed in term in terms of a model summation. So, all the 

parameter that appear on the right hand side are essentially obtained in our free vibration 

analysis; these are the elements of model matrix; omega d n is a damp natural frequency 

of the n-th degree of freedom; eta n is the damping in the n th coordinate; omega n is the 

natural frequency in the n th model. 
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So, I can now construct this solution at r-th degree of freedom, this is what I get. Here 

again we can notice that this function is symmetric and if you assemble all elements of 

this impulse response functions into a square matrix, we call this matrix H of t as matrix 

of impulse response functions. So, the notion of an impulse response function for a 

single degree freedom system now gets generalized and we get instead of getting as 

scalar function, we get a matrix and this function this matrix is symmetric. Again as I 

pointed out already, we need not include all the modes in these model summations; we 

can include the first few modes on which we have greater trust. 

Now, once I find the impulse response function, I can use the Duhamel’s integral 

concept and if I now assume that instead of unit impulse, there is a load F s of tau, I 

applied at the s-th degree of freedom, instead of unit impulse excitation, then the 

response, the remaining all other things remaining the same, that means, all other degrees 



of freedom are not driven and systems start from rest, I get the response in this form. So, 

knowing the impulse response function, I can construct the response to an arbitrary load. 

So, here again I get a convolution integral, but this is now this gets buried inside; now 

there is a summation here that needs to be factored in while interpreting this integral as a 

convolution integral. 
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So, we can consider the same example, instead of applying unit harmonic excitation, 

now I applied unit impulse and I solve this problem and I get X 1, X 2, X 3 that leads to 

h 1 1, h 1 2 and h 1 3 of t 1 column and one row in our impulse response function matrix. 

So, if I repeat this exercise, by that I mean after completing this, you now apply unit 

impulse here and measure the response, then you apply unit impulse here and measure 

the response, you will get a 3 by 3 matrix of impulse response functions and this 

constitutes one of the way of studying dynamical system in laboratory and these 

impulses are applied through instrumented hammers and measurement of this impulse 

response function is an important activity in a dynamics laboratory. 
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So, I have numerically solved the equation using this summation. We have already seen 

what are the eigen vectors and damping and all the numbers we have computed; so if I 

plug that in, I get this is the element h 1 1 of t and as expected as time tends to infinity 

the system comes to rest. But the transient here you can see that they consist of more 

than one modes, there are more than one harmonics, which are getting super post here 

and actually all the modes are participating in the free vibration decay; whereas in a 

single degree freedom system, you apply in unit impulse, the decay of the oscillations 

there will contain only one frequency that is the system natural frequency in that case, 

but whereas here, the response would consist of contributions from all the three modes. 
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This is plot of h 1 2 of t, here again there are participation of different modes, for instants 

here you can see that. But this decay is dominated by a single mode as you can see here 

and this is for the third degree of freedom system. Initially, there is some influence of 

more than one mode, but eventually the decays at basically one frequency. 
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We have already seen in the discussion of single degree freedom system that the impulse 

response function and complex frequency response function form a Fourier transform 

pair and that property continues even for discrete multi-degree freedom systems. And if 



you recall, the definition of a Fourier transform pair for function F of t and F of omega 

we can show that the impulse response function H i j of t and complex frequency 

response function H i j of omega form a Fourier transform pair. So, I leave this is an 

exercise for you to do this. 
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Now, equipped with this background on deterministic analysis of multi-degree freedom 

systems in time and frequency domain, we are now ready to you consider the problem of 

random vibration of multi-degree freedom system. So, we will start by considering 

MDOF systems under stationary vector random excitation. So, we will consider first the 

response analysis in the frequency domain. So, we consider the equation of motion M X 

double dot plus C X dot plus K equal to F of t and we assume that the system start from 

rest, X of t is the n cross on vector that means in the n degree freedom system. We 

assume that the mean of this process vector random process is 0 and its covariance is 

given by R f f of tau. So, this is a n cross n matrix, because this is n cross1; this is 1 cross 

n and we get this square matrix; this superscript t is the transposition operation. 

So, R f f of tau is actually n cross n matrix, where assuming that all degrees of freedom 

are driven by one component of F of t. So, we are basically interested in characterizing 

the response of this system in the steady state. So, in the steady state, we can write X t of 

omega is h of omega into F t of omega, where H of omega is a matrix, X t of omega is 

the Fourier transform of a truncated time history of X of t, where between 0 to capital T 



it is equal to X of t and beyond that, it is 0 and this we have already discussed when we 

defined Fourier transforms of a periodic signals. So, the same ideas being used here and 

this is a definition of the matrix of power spectral density functions, since X of t is now n 

cross 1 vector, this power spectral density function will be a n by n matrix and this is 

defined as expectation of 1 by t x t of omega X t star transpose omega as t tends to 

infinity; so this is conjugation and transposition. 

So, this is n cross 1; this is 1 cross n; so the product is n cross n. Now, for X t of omega i 

will use this; I write H of omega F t of omega and for X t star t of omega, I write this I 

get this. Now, the in this expression, the randomness is involved with F t of omega and 

its conjugate transpose. So, H of omega and H star t of omega are deterministic; so the 

expectation operator can be taken inside; if I do that, I get the output power spectral 

density function is now given by H s into H dot t. So, this is a generalization of what we 

got for single degree freedom system as H of omega whole square S f f of omega; this 

what we saw for single degree freedom systems; now this is for M D of system. The 

elements of H of omega, I have already describe how to compute them, either directly in 

terms of M c k or in terms of the natural frequency is a mode shape. 

Essentially if you are looking response in the steady state, the power spectral density 

function is a complete description. So, this this analysis completes the analysis that we 

intended to do the outside, that means, we are find out the output power spectral density 

function matrix of output power spectral density function. 
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Now, we can repeat this exercise by considering the response analysis in time domain. 

Here, of course, there will be transient state and steady state; the steady state, of course 

should correspond to what we are seeing just now, but time domain analysis also 

includes transient; so that we will see how it emerges. So, we consider again the same 

system m x double dot plus C X dot plus K X is equal to F of t and F of t has 0 mean. 

And covariance matrix R f f of tau, now this vector X of t is now given in terms of 

matrix of impulse response functions. So, this is n cross 1; this is n cross n; this is n cross 

1. F of tau is a random process vector random process. So, now, if I take the expectation 

on this, I get expected value of X of t is this matrix H of t into expected value of F tau 

and this is given to be 0, therefore 0 mean X of t becomes 0. 
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Now, we can consider the response at t equal to t 1, I get x of t1 is 0 to t 1 into this; I can 

also write the response at t equal to t 2, I get this expression; if I now take transposition 

of this, I get X t of t 2 as F t of tau 2 into h of t 2 minus tau 2 transpose; this is actually 

symmetric matrix so we can omit this t, but although I have written it. Now, if I multiply 

this is n cross 1 so this is one cross n; so I can multiply that; so if I do that, I get double 

integral and if I take the expectation and take the expectation operator inside; I get this 

expression shown here and this expected value is nothing but R f f of (tau 1, tau 2) and 

since F of tau is given to be stationary, I get this.  
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So, this is n cross n; this is n cross n; this is n cross n; this n cross n; so this is the 

response characterization using matrix notations. So, this again completes the response in 

analysis in time domain. We can redo this analysis by considering the solution in terms 

of normal modes, suppose before I do the random vibration analysis, if I were to make 

the transformation X of t is phi Z of t and for K-th degree of freedom, I get this 

summation and this Z n of t is governed by this single degree freedom system and p n of 

t is the generalized force and we have seen that p of t is phi transpose F of t; so using 

that, I get for the n-th element here, I get this summation. 

So, Z n of t now in scalar notations in scalar form is now given by H n of t minus tau into 

this forcing function. X k of t therefore is obtained by using this transformation; all the 

modes need to be summed; if I do this, I get X k of t in terms of a double summation. 

Now, based on this expression, we can of course evaluate the mean and the covariance 

and other moments of X of t. Here, I have got the response characterization in terms of 

the natural frequencies and normal modes of the system. 
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As an illustration of these formulations we will now consider how do how do multi-

degree freedom systems response to earthquake like support motions. Here I have shown 

a typical pipeline in industrial structure and these orange elements are the supports and 

these supports receive differential support motion in the event of an earthquake, so this 

piping is housed inside a civil structure. So, in the event of an earthquake, the civil 



structure oscillates and these points are of the piping are connected to the slabs and 

beams and walls of the civil structure, and due to oscillation of this building components 

this pipe also oscillates and since this connections are different, elevation are different 

points on the structure; this supports suffer different support motions. 

So, if you make a finite element model for this, this is this second view graph shows the 

how a finite element model is made using line elements, but this aspect is not important 

for our discussion, this is shown for completeness. 
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A simpler class of problem would be a building frame, which is subjected to support 

displacement u of t and again, if you assume slabs are rigid and heavier compared to 

column and columns are flexible, etcetera the usual share building model assumptions 

we can approximate this by a three degree freedom system, where the support motions 

now appear here has support displacements. So, this u of t now is scalar random 

processes, its mean is 0 and suppose if it is stationary random process, its auto 

covariance is given by R u u of tau. 
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So, we can write the equation of motion. Now, u of t is appearing here; this we have seen 

in the previous lecture. So, if I now introduce the x 1, x 2, x 3 coordinate, which defines 

the relative displacement with respect to the ground, they related to the displacement of 

the masses with respect to the ground, I get these as an equation of motion and the effect 

of support motion appear as external forcing m 1 u double dot m 2 u double dot and m 3 

u double dot. 
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So, I can cause this equation in the matrix form, this m x double dot plus c x dot plus k x 

is equal to minus m this column of unit elements 1 1 1 into u double dot t. There is only 

one time history here, but difference multiples of this acceleration m 1 into u double dot 

acts on first floor, m 2 into u double dot acts on second floor and so on. Now, we need to 

analyze this equation, when u double dot of t is a random process. 
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So, we can follow the matrix notations to start with, suppose if I write the equation of M 

X double dot plus C X dot plus K X is equal to F of t, where F of t minus m unit vector 

column vector u double dot of t. Now, if you are interested in analysis in frequency 

domain, I can consider the Fourier transform of the input F t omega as this and if I want 

the power spectral density of the input effective forces, I get m unity; I have to multiply 

F t of omega by F t star of omega and take the expectation. So, what I am doing is limit t 

tending to infinity 1 by t expected value of F t of omega F t star of omega. 

So, this is contribution this is F t of omega; F t star of omega will come as U T star 

transpose of omega is unit vector transpose, M transpose is unity. So, the expectation 

operator goes applies only on the random components. So, I get S X X of S F F of omega 

as this M into unity S u double dot of omega unity transpose M. So, this is the power 

spectral density function of the excitation. Now, output power spectral density is H S f f 

of omega into H star t of omega. So, I have now this expression; I plug it in here and this 

is the p s d that I am looking for. 



So, if you are doing a coding on computer, this is very easy to implement. H of omega 

here is the inverse of the dynamic stiffness matrix and we already seen that this can be 

computed in terms of the normal modes of the natural frequency and normal modes of 

the system. 
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Now, you want to do a time domain analysis, again the analysis is straight forward. F of t 

is now this; mean is 0, because mean of u of t 0. If you want now the matrix of auto 

covariance function of F of t, I have to find expectation of f of t 1 into f transpose of t 2 

this is the n by n matrix. So, for F of t I have got this expression; now if I substitute this 

here, I get this expression; this is F of t into F t of t 2. So, this is what I am getting and 

expectation runs only on U double dot of t. So, this is R f f of (t, t 2) so this nothing but 

M unity R u double dot of (t 2, t 1) into unity transpose into M. 



(Refer Slide Time: 41:32)  

 

Now, I know X of t is given by this; this is a matrix of impulse response function; this is 

the applied expectation. Now, f of tau itself if given in terms of M into unity u double dot 

of tau d dot of t minus sin here and expected value of X of t is 0. And if you want now 

the auto covariance of X of t, you have to take expected value of X of t into X of t 2 

transpose and if you do that, you get this expression. These are all in now matrix notation 

and we can evaluate this to derive the covariance. In terms of the generalize coordinates, 

I can make the transformation X is equal to phi y; I am using y, because Z I have used 

for total displacement. 

 So, if the X K of t is given by this now; so we can find out the expression for the 

effective force for n-th coordinate n-th degree of freedom by using this relation and this 

quantity phi transpose M into unity, this one is given a name it is known as modal 

participation factor. So, I get the equation for n-th generalize coordinate as Y n double 

dot plus 2 eta n omega n Y n dot plus omega n square Y n into gamma n u double dot of 

t. For different values of this n, the right hand side is implies scale by this participation 

factor. The time history remains the same, but it is factored by multiplied by gamma 1 

gamma 2 or whatever, the n-th mode it is gamma n. This gamma itself is function of the 

model matrix and the mass matrix of the system. 
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So, X of t is this; this is the transformation modal matrix and X K of t is this. So, if I now 

write Y n of t in terms of impulse response of n-th degree of freedom system, I get this 

expression; so substituting this into expression for X K of t, I get X K of t to be given by 

this. Now, I can launch the calculation of response moments; so you want now the mean, 

you take the expectation of this expected value of u double dot of t is given to be 0; 

therefore, expected value of X K of t is 0. And if you multiply now X K of t 1 into X K 

of t 2, you get the you need to compute the expected value of Y n of t 1 and Y m of t 2 

and if we do that, I get this double summation and this expected value of u double dot of 



tau 1 u double of tau 2 is this, because u of t is given to be stationary. So, this is actually 

the auto covariance of response that I am looking for. In this effective t 1 equal to t 2, I 

get the variance, which is given by this expression. 
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So, if you know now the auto covariance, we have to now the task is to reduce the 

evaluation of these integrals. This analysis can also done in frequency domain; to see 

that, we again begin with the transformation X K of t, X of t and X K of t is given by 

this. Now, I take the Fourier transform of this; I get this expression in terms of the 

Fourier transform of the generalize coordinates the truncated Fourier transform of the 

truncated time histories and the expression for Y n t of omega itself can be derived by 

using the governing equation and one gets in terms of participation factor and Fourier 

transform of the u double dot of t and this is the expression that we get. 
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So, if I now substitute the expression for the generalize coordinate into the expression for 

the physical coordinate, I get this expression. Based on this, now I can compute the 

power spectral density of X K of t, that is, actually limit t tending to infinity of 1 by t of 

expected value of X K T of omega X K T of omega conjugated. So, I have find out this 

expression; I can find this conjugation and multiply; if I do this, this one single 

summation become double summation and I get this as the output power spectral density 

function. This is the quantity that we are looking for. 

In this expression, we can do the following, we can sum up all the diagonal terms, that 

means, I will take the summation when n equal to m so i get n equal to n i get this this 

term, where n equal to m therefore, all this quantity now become real and this is the 

expression. These are the half diagonal terms contribution from half diagonal terms; so I 

can now find the variance of the process X K of t by finding area under this power 

spectral density function area. Under this first term can be viewed as contributions that 

ignore the modal interaction; this second term, where n naught equal to M is 

contributions due to covariance or cross covariance between different normal modes, 

then the different general generalize coordinates. 

Therefore, this can be viewed as some kind of correction due to modal interaction. Now, 

this description becomes important later when we discuss relationship between response 

spectrum base analysis and power spectral density function power spectral density 



function based analysis for earthquake response structures. There is a question on rules 

of combining modal contribution arises and those rules are essentially formulated by 

investigating these expressions and we will written to this later, when we will discuss the 

modal combination rules in response spectrum base analysis. 
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This kind of division into one that ignores modal contribution and one that correct it can 

also be done in time domain. Here again in this summation also, I can first summed the 

terms, where n equal to m and get the second set of term which represents cross 

correlation between different modes. So, if all follow our calculation right as t tends to 

infinity, whatever we get here in time domain analysis should match with this analysis; 

this is valid only for steady state. So, such a match we have already seen for single 

degree freedom system under random excitations. 



(Refer Slide Time: 48:00)  

 

So, to illustrate this idea, I have considered a building frame under random support 

motion and this support acceleration is modeled as a Kanai Tajimi power spectral density 

function. So, this this itself if you recall was obtained by passing a white noise through a 

soiled layer and the absolute acceleration at the top of the soil layer was taken as the 

input to this building. 
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Now, if you do the random vibration analysis in this case, this is actually the input power 

spectral density that is actually use in numerical work the Kanai i th power spectral kanai 



Tajimi power spectral density function as I mentioned, applies a unit applies a white 

noise at the bedrock level; this is bedrock; this is soil and we are interested in how this 

top of the soil layer oscillate and we have modeled this soil layer as a single degree 

freedom system. Consequently when you look at the power spectral density of the 

absolute acceleration at the top of the soil layer, it will have one resonance peak; this is 

this peak corresponds to I think I have taken as four pi radian per second and this 

bandwidth corresponds to damping in the soil layer and this is kept at fairly high value 

0.53. So, this is the power spectral density function, for that we are assuming for the 

ground acceleration. 
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If you carry out the response analysis using the method that I just now outlined, I get the 

power spectral density function; the auto power spectral density function for the three 

degrees of freedom x 1, x 2, x 3. So, the black one is for x 1, the red 1 for x 2, green one 

for x 3. So, this is the displacement auto power spectral density function for the three 

coordinates and the power spectral density function itself is expressed in these unit. 

So, you can see here, the power spectral density function has you could expect is 

dominated by first mode, because the first natural frequencies around 14 radian per 

second and soil frequency is around 4 pi, which again close some thirteen radian per 

second. So the first mode dominates the behavior and second and third modes make 



marginal contribution to the total response; mind you mind you that this y-axis is on log 

scale. 
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We can also look at the cross power spectral density function between response at 

different floor levels; that cross power spectral density function would be a complex 

value of quantity; therefore, we can talk of an amplitude function and a phase function. 

So, what is shown here is the amplitude of cross power spectral density function between 

x 1 of t and x 2 of t, the phase spectrum is shown here. 
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So, this this complete analysis of you know structures such as this, where all the supports 

of the structure essentially receive identical support motion. A generalization of this 

problem would be when different supports receive different support motion. So, we will 

briefly indicate what exactly is the problem there and consider the detail discussion in 

the next lecture. So, here what we are considering is a structure something like this; 

suppose we have made a computational modal say using finite element method, this A B 

C are supports; suppose we are assume that these supports are subjected to 

displacements, there are six displacement components, which are different from each 

other. So, this I will call it as U g 1 of t, U g 2 of t, U g 3 of t u and so on and so forth. 

This is a frame structure made up of beam elements; so the degrees of freedom that a 

node here will have are two translations and one rotation. So, if you look at this entire 

structural modal, there are now degrees of freedom associated with the ground; these 

points as I call it as ground and degrees of freedom associated with the super structure. 
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So, the total degree of freedom can be classified has some u t of t and u g of t; this 

superscript capital T indicates total response and u g of t are the applied support 

displacements. So, if you write now the equilibrium equation for the entire structure, I 

get the equation standard form M u double dot plus u dot plus K u equal to some F. But I 

have now partitioned the displacement degrees of freedom into u t and u g of t; these are 

unknown degrees of freedom of the super structure and u g of t is the applied support 

displacements. This u g of this u t there, let us assume that there are capital N number of 



unknowns, whereas this u g there are n g number of degrees of freedom; this P g of t , 

here on the right hand side P g of t are the reactions. 

There is no external force other than the support motion therefore, this element is 0. So, 

based on this, partitioning of the displacement vector I can also partition now the mass, 

the damping and stiffness matrices and we can consider this equations separately. This m 

c and k that appear here are n cross n, and this M g C g K g are n cross N g and this M g 

g C g g K g g are n g cross n g matrices. 
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Now, before we look into the detail analysis, we can consider certain response features 

without actually looking into the solution of the equilibrium equations. Imagine that 

these support displacements are applied statically then there will be stresses in the 

structure because of differential support displacements; even purely under static 

conditions. Now, if these support displacements are now dynamic, there will be a pseudo 

dynamic response, which is purely calls purely due to the differential displacements and 

which is not affected by the inertia of this structure. 

So, the total response can be decomposed into two vectors: a pseudo dynamic component 

and a dynamic component. In analysis of structures of this kind, it is important to 

delineate the contributions to the response from the pseudo dynamic component and 

dynamic component. So, we when we analyze this problem therefore, we need to 

formulate the problem in such a way that you will be able to output the properties of 



pseudo dynamic component of the response and the dynamic component of the response. 

So, this problem we will formulate in the next lecture and we will conclude this lecture at 

this stage. 


