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In the previous lecture, we considered the input output relations for linear time invariant 

systems. We show that, if f of t is the input x of t is the output, it is obtained as 

convolution between f of t and impulse response function of the system and that is 

representatives with this; this is time domain input output relation. If input is specified in 

terms of its Fourier transform, the output Fourier transform will became by 

multiplication of the frequency response function H of omega and the Fourier transform 

of the input; so, convolution operation in time domain becomes multiplication in 

frequency convolution. The definition of impulse response function itself is shown here; 

h of t is the response of the system to a unit impulse at applied at t equal to 0. In 

similarly, the frequency response function is the amplitude of the steady state response of 

the system to a harmonic excitation; this is H of omega. This f of t and F of omega form 

Fourier transform pair x of t and X of omega form Fourier transform pair; similarly, h of 



t and H of omega form Fourier transform pair. So, this in a nutshell, the summary of 

input output relations for linear time invariant systems. 
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We also considered the problem of uncertainty propagation, if f of t is a input and if f of t 

is a models as random process, then for every realization of f of t, there will be a 

corresponding realization of x of t, that can be obtained for instance via convolution 

between impulse response function and f of t. So, if we are given samples of f of t and 

then the initial conditions, the problem of uncertainty propagation consist of finding 

corresponding samples of x of t; this would mean that, we may have to solve a family of 

deterministic problems, each of the this problems corresponds to one realization of f of t 

to produce one realization for x of t, that if f of t is specified in terms of, it is new, how 

one derives a mean of the response, in terms of mean of f of t, is it possible, if so, how to 

do it. 

Similarly, if one, we has description of covariance or the power spectral density function 

in the frequency domain, then correspondingly how to define the covariance of the 

output, can we define the power spectral density for x of t, if we can define how to find 

it? Similarly, such questions can also be as with respect to higher order moments or for 

the probability density functions, for example, if we are given the first order probability 

density function of f of t, what is the first order probability density function of x of t? So, 

the similarly, you can repeat this question for nth order p d f for f of t and corresponding 



nth order p d f of x of t. So, basic fact that has to be emphasized here, is that, the 

propagation of uncertainty in such systems follows allows of mechanics, that has to be 

understood, because the output is obtained as a transformation of f of t; therefore, 

essentially we are making transformations on random quantities, and as we already seen, 

there are rules for handling such transformations of random quantities and they come 

into play while solving this problem. 
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Now, we reconsider the problem of a single degree freedom system under random 

excitations. Let f bar of t be a random excitation and let x naught and x naught dot to the 

initial conditions; let mean of f bar of to be m f of t, the what we do, introduce the f of t, 

such that f bar of t can be written as some of the mean component and fluctuating 

component, so that, this mean of this fluctuating component can be 0. Now, before take 

expectations on both sides on this equation, we get m of x double dot plus c of 

expectation of x dot plus k into expectation of x, this must be equal to expectation of f 

bar of t; similarly, the expected value of initial conditions will be x naught and x naught 

dot. So, never analysis we are assuming that x naught and x naught dot or deterministic, 

they can also the random for the time during were not including that possibility. 
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Now, this is the equation that girths the mean and this is deterministic equation. So, we 

can use the standard formulation, and write the expression for time history of this mean, 

in terms of initial condition x naught x naught dot, and this Duhamel’s integral in terms 

of mean of f of t; so, this expected value of f of tau is m f of tau and this is nothing but m 

x of t. Thus we can consider this a equation exclamatically as shown here, what goes into 

the system, is the expected value of f of t and what comes out is the convolution between 

h of t and m f of t to produce the expected value of x of t. So, this is the input output 

relation for the expected value of their response, in terms of expected value of the input. 
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Now, just we wrote f bar of t to be f of t plus its means, we can also right the mean the 

response process itself to be some of its mean and then random fluctuating component 

whose mean is zero; suppose, now I substitute this into the only equation, I will have for 

x of t expected value of x double dot of t plus y dot of t, that is what written here, 

similarly for c x dot, I will have c into expected value for x dot of t plus y dot of t, so that 

is here, similarly for k y k x, I will have k into expected value of x of t into k y, this is 

this, and for f bar of t I will write m f of t plus f of t. We already seen that the some of 

these terms, terms is equal to this, because that is the governing equation for expected 

value of x of t; therefore, we can cancel out these three terms and what were left is, left 

worth is m y double dot plus c y dot plus k y equal to f of t. Similarly, the initial 

condition, if now I consider expected value of x of 0 plus y of 0 is x naught to be already 

seen that expected value of x of 0 is x naught, this should mean the expected value of y 

of 0 will be 0 and by the same argument expected value of y dot of 0 is also 0. So, for 

this random component y of t, we have now in equation a right hand side is a random 

process will 0 mean and this system starts from rest. 
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So, for such systems, that is for systems starting from rest, the Duhamel’s integral 

provides the complete solution. So, y of t can be written as 0 to t h of t minus tau f of tau 

d tau; just verify, you can take expected value of y of t, that is expected value of f of tau 

this is 0; therefore, this integral is 0. How about second level of properties, now you 

consider expected value of y of t 1 into y of 2, so we have to multiply the Duhamel 



integral corresponding into y of t 2 with another Duhamel integral corresponding to y of t 

2; so, if you do that, we get double integral, were now the integration is on tau 1 to tau 2 

and this t 1 and t 2 appear in the integrant here, in the integrant here, as well as in the 

arguments here. So, the expectation of operator assuming that, this integration and 

expectation operator can be interchange, if we do that we will be left the expected value f 

of tau 1 into f of tau 2; this is deterministic so this can be pulled out. So, we get now here 

the expected value of the response process, the covariance of the response process in 

terms of covariance of the input process. So, this can be viewed as the input output 

relation for covariance of the output in terms of covariance of the input.  
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Now, in the expression for r y y (t 1, t 2), if I take t 1 equal to t 2, I get r y (t 1, t 2) is 

variance, mind you, mean of y is 0; therefore, autocorrelation function and auto 

covariance function are the same. Therefore, t 1 equal to t 2, the mean square value and 

variation will be the same, so that integral right hand side here now becomes wherever t 

1 and t 2 is replace by t and I get this expression. So, one thing that we can notice 

immediately is, if the auto covariance of the input, you can find the auto covariance of 

the output, that means, to find the auto covariance of the output, you need to know the 

auto covariance of the input; if only the variance of the input you will not be able to find 

variance of the output, so to find variance of the output you need to know the covariance 

of the input, that has to be understood. Now, the autocorrelation function is the second 

order property, we can consider higher order moments, so we can take expected value of 



y of t 1 y of t 2 y of t 3, this will be a triple integral and now expectation will be taken on 

f of tau 1 f of tau 2 and f of tau 3, and this, this integral can be rearrange in this form, so I 

have in the integrant expected value of f of tau 1 f of f of tau 2 into f of tau 3, so this is 

the third order moment of f of t, if the third order moment of f of t you can derive the 

third order moment of the response. 

(Refer Slide Time: 11:42) 

 

So, we can generalize this now, and say, in general for linear time invariant systems, the 

knowledge of nth order moment of input is adequate to determine the nth order moment 

of the response process; this what mean, the moment equations are closed for linear time 

invariant systems; this is not in general true for dynamical systems, for instance, if you 

have a non-linear system, this is not true, this can be see if you consider a simple non-

linear system, where I have now a cubic non-linear term, if I know, the consider the 

expected value of the response, this will be expected value of x double dot plus c into 

expected value of x dot plus k into expected value of x plus alpha into expected value of 

x cube is equal to expected value of f of t. Now, you please notice here the equation for 

expected value of x contains the expected value of x cube, if you now try to write a 

another equation for expected value of x cube, for instance, you can multiply this 

equation by x square of t, x square of tau, for example, and take expectation on both 

sides, you will immediately see that, you will need, if do that you will need expected 

value of x cube of t into x square of tau again which will be unknown. So, the moment 

equations here you will never get closed, they will form in infinite hierarchy of equations 



which at most is in expectable set of equations, which can result in resolution for the 

moments. So, this is known as a closer problem, later when we discuss some issues about 

the non-linear random vibration problems, we will briefly touch upon this again. 
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Now, to illustrate the idea that we just know describe, we will consider now the response 

of the single degree of freedom system, under Gaussian white noise excitation. The 

governing equation here is again m x double dot plus c x dot plus k x equal to f of t, we 

will assume that system starts from rest and the expected value of f of t 0. Without lose 

of generality, these assumptions can now be made, that mean of the applied force is 0 

and initial condition have 0, that means, the system from rest and excitation has 0 mean. 

If they, if any of these conditions are violated, we can solve a separated deterministic 

problem and find out the contribution from non-zero mean for excitation and non-zero 

initial conditions, that, that is reasonably straightforward. So, we focus only on issues 

related to randomness in f of t, so the expected value of f of t is 0, since we are saying 

that f of t is the Gaussian white noise and the expected value of f of t 1 into f of t 2 is i 

into direct delta of t 2 minus t 1. Now, x of t can be written in terms of the Duhamel 

integral, again as shown here, now if you consider the expected value of x of t expected 

value of x of t is expected value of f of tau, will come here Duhamel integral, this is the 

given to be 0; therefore, this is 0. This system starts from rest; therefore there are no 

other terms in your expression for x of t.  
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How about covariance of x of t, so you now consider expected value for x of t 1 into x of 

t 2, so this is the expected value of this Duhamel integral; here we can get the expected 

auto covariance of the output, in terms of auto covariance of the input, in this form. And 

for r f of tau 1, tau 2, now I will write the expression for auto covariance of a white 

noise, which is i into direct delta of tau 2 minus tau 1. So, one integration can easily be 

perform, I can replace tau 2 by tau 1 and I get h of t one minus tau 2 h of t 2 minus tau 2 

and then 1 and only integral remains that is the integration with respect to tau 2; so, this 

is 0 to t 2 and 1 integral with respect to tau 2. 
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Now, h of 2 is given by this damped exponential a sinusoidal with exponentially 

decaying multiplier, so the 1 by m omega d exponential minus eta omega t 1 minus tau 

etcetera. So, this can, in fact be integrated within straightforward application of rules 

integral calculus, and we get this expression, then this says I have written as slightly 

form that can help us to analyze the nature of this function. So, there is function chi of t 

sitting here and this chi of t given by this expression, and then we can multiplier which is 

exponentially minus eta omega t 2 minus t 1. If I now carefully look at this expression, 

we can see that r x x (t 1, t 2) this is actually the function of both t 1 and t 2, because 

there is t 1 plus t 2, where the t 1 here and the sign omega t 1 plus t 2 etcetera. So, from 

this we can conclude that x of t is a non-stationary random process, because 0 mean 

constant mean, that it has time varying auto correlation function which is not a function 

of time difference. 
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We can consider the variance by replacing t 1 equal to t 2 equal to t, and if I perform this 

integration, we get this expression. Here again you can see that variance is the function 

of time, therefore again it points towards fact that response is non-stationary. What 

would happened now, if for example, in the expression for the variance time becomes 

large, if we take look here, the term inside these braces is sinusoidal and constant here 

cosine and sine terms there bounded between plus and minus 1 for all values of t, but this 

multiplier function exponential minus 2 eta omega t ensures that as time become very 

large and the product of this function and the terms inside the braces go to 0 and we are 



left with this one constant term; so, the variance that is here still becomes large, becomes 

a constant; how about auto covariance and you now take t 1 to infinity, t 2 to infinity, but 

t 2 minus t 1 to be tau. 

(Refer Slide Time: 19:33) 

 

(Refer Slide Time: 19:56) 

 

If we put the limit, what happens, here as t 1 goes to infinity the multiplier to these terms 

inside this brace goes to 0, where as the terms inside the second bracket, I have sin in 

cosine and also they have their functions of t 2 minus tau 1, therefore t 2 minus tau 1 is 

going to tau; therefore, I get the auto covariance function to be function of only tau. And 



therefore, we can conclude that as time becomes large, the process becomes weakly 

stationary. 
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So, I have shown a few plots of auto covariance and variance, is a plot of variance 

system starts from rest and this is for different values of dumping parameter, so as you 

see here time becomes large, after some time there is a initial growth and after some time 

the response which is a constant value, the variance becomes constant. The steady state 

value, that is the steady state value of the variance different on damping; so, lesser than 

damping higher will be the response variance and not only that, the time taken for this 

system to reach steady state increases with reduction in damping, because the function 

exponential minus 2 eta 2 omega t, this case relatively more slowly for lesser value of the 

eta. So, any case as long as eta is not equal to 0, the steady state exist and variance 

becomes constant; if damping is 0, this system will never reach steady state. 
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Here, I have shown plot of auto covariance function t 1, t 1 plus tau as the function of t 1 

and for different values of time lags. So, here again what happens for small values of t 1, 

the function is varying with respect to time, but for large values of t 1, this function is 

also becomes constant. So, let this for large values of t 1, the auto covariance function 

simply, because the function of tau, this is tau equal to 1 second and this is 2 seconds, 

this is 1 second, this is 2 second, this is 4 second, so it reaches the different values. 
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This is the plot of R of tau, as a function of tau, you can see that, this is the shown for 

both the positive and negative time lags, the you can easily see that, this function is 

symmetric about i equal to 0 and it represents a decaying sinusoidal function. So, this is 

the auto covariance of the output in steady state; so, the process is stationary in steady 

state. 
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So, we can summarize now, for small times the response is non-stationary, the 

covariance is the function of both t 1 and t 2 and variance is function of time. For large 

times the response becomes stationary, that could be the variance of time lags and 

variance becomes the in variant; in present case, mean always 0. When the covariance 

becomes function of time lags and variance becomes constant, we say that, this is the 

time to reach the stochastic steady state. If damping is 0, this system fails to reach the 

steady state. This motion of transient state and stochastic steady state is synonyms or in 

analogs to the motion of periodic steady state and transient state and harmonically driven 

the single freedom systems, if you recall for small times, single degree of freedom 

systems and harmonically, there response will be periodic, thus the time becomes large 

the response will becomes harmonics, with this amplitude and phase becoming 

independent of time. So, there is an analogy between stochastic steady state and 

harmonics steady state. 
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So, I leave this is an exercise, you now consider the single degree of freedom systems, 

which is driven by a combination of a harmonic load and then random process f of t with 

non-zero initial conditions. So, this P and lambda deterministic; therefore, P cos lambda t 

is a mean of the excitation process, but f of t is 0 means Gaussian white noise process. 

So, with this covariance, now the question is you need to discuss the nature of steady 

state response of x of t; so, it has both components half harmonic steady state and 

stochastic steady state, so you have to see if there exist any interaction between them and 

what exactly happens as damping becomes 0 and the driving frequency goes to the 

nature frequency of this system. So, what are all the issues if you discuss, you would 

appreciate the points being made in the context of excitation under system, under a 

stationary excitation. 
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Now, what happens if the excitation is non-stationary; so, if you consider now, is a single 

freedom system and under a Gaussian modulated white noise excitation, by that mean, 

the excitation is obtained by multiplying a 0 mean Gaussian white noise process with 

modulating function or envelope function e of t; this e f t is given here, it is some of t 

exponentials and f of t is a stationary white noise. The right hand side here although it 

has stationary component, the process itself is non-stationary. Now, what is x of t, the 

system starts from rest, therefore Duhamel’s integral we gives the complete solution, 

therefore, this is 0 to t h of t minus tau e of tau into f of tau t tau. What do you expected 

value of x of t, it takes expectation on both sides e of t is the deterministic, so I get the 

expected value of x of t is 0 to t h of t minus tau e of tau which is deterministic, therefore 

the outside, this expectation operator and we have expected value of f of tau e of tau 

equal to 0, because expected value of f of tau is 0. 
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This is a kind of a notional representation of the excitation process; this practical line this 

is the e of t and this is the random excitation. This actually strictly speaking does not 

corresponding f of t being the white noise, because white noise as unwanted variance, we 

cannot really that is not physically releasable. So, what is shown in the red here, can be 

viewed as a band limited noise, where the band width is sufficiently large and therefore 

we can notionally represent that; so, in any case, in excitation looks like is red color. 
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Now how does a covariance looks like, if we now take a expectation x of t 1 and x of t 2, 

there will be a expectation of double integral and I will have a e of tau 1 and e of tau 2, f 

of tau 1, f of tau 2, rearrangement of this will lead to expression for the output auto 

covariance in terms of input and auto covariance f of tau 1, tau 2, this is nothing but i 

into delta of tau 2 minus tau 1. Again, we can carry out the one of integrations by 

replacing tau 2 to tau 1 and we are left with an integration with respect only tau 2. 
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This again can be integrated, if the model for e of tau 1 we can easily evaluated this 

integral and if we put t 1 equal to t 2, we get the expression for the variance and this is 

the expression for variance. Now, we have an integrant, not only the h square of t minus 

tau but also multiple of e square of tau, h of t again t 1 in terms of sin in exponential 

function. We can plot, we can derive the expression for variance of the output and I will 

as shown here, the plots of variance of the response for the different values of eta. And 

we can easily make out, that the response is the non-stationary random process, this is to 

be the expected, because input itself is non-stationary; so, naturally the output is very 

likely to be the non-stationary that indeed is what is observed through the analysis. 
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We now move onto the description of input output relations, in terms of frequency 

domain description of the system. So, we consider again the system driven by f of t, 

where f of t is the non-stationary random process. As we saw the motion of power 

spectral density function is valid only for stationary random process, so we are restricting 

input to be stationary and we assume the system starts from rest. So, f of t is the 

stationary random process is 0 mean and auto covariance c of f of t tau and power 

spectral density s f of omega and we restricted attention only to steady state response of 

x of t. As we already seen in this steady state, x of t is the stationary random process and 

therefore I can talk about is auto covariance, as well as it is power spectral density 

function. So, the question is now am going to discuss is, what happens to the power 

spectral density of the response? There are different ways of solving this problems, one 



is to right the develop, the model for auto covariance of x of t as function of t 1 and t 2 

and the allowance the limits of t 1 and t 2 go to infinity with t 2 minus t 1 to be finite, 

you will get the auto covariance of the output, then you can consider the Fourier 

transform of the auto covariance. 
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A simpler alternative would be to consider the definition of the power spectral density 

function, assuming the system is already in steady state, a transient have been dissipated 

and system is responding to the steady state, so the power spectral density of X of T is 

given by this, this is by definition. Now, X T of omega is the Fourier transform of 

sample of X of T, where capital T denotes the fact, that we are defining a associated 

function x T of T to be x of t for T, T and 0 otherwise. So, as we already done, we will 

analyze the Fourier transform of this function and then allow this limit t to infinity. So, 

this is the input of output relation, for the sample of Fourier transform of f of t and the 

output x of omega, using this, I can now construct the expression for power spectral 

density function, their response and this is what I get, h of omega is the frequency 

response function of the system. So, here we have h of omega into x star of omega, 

which becomes modules h of omega whole square and I have f t of omega into f t star of 

omega limit t 2 into infinity on by t h of omega is deterministic; therefore, it gets pulled 

out of the expectation, and what remains inside, nothing but the definition of power 

spectral density function of f of t, thus I have known the output power spectral density 

function S X X of omega, in times of the input power spectral density function S f f of 



omega and this is obtain by multiplying the input power spectral density function, by the 

square of the amplitude of the frequency response function of the system. 
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So, that is pictorially depicted here, this is the input and output relation for power density 

function of this system, this is the output power spectral density, this is input power 

spectral density and this is system of function, which is relevant for this input output 

relation. So, it is h of omega whole square which serves as the system function or the 

transfer function, this should mean that, if we carefully look at that h of omega whole 

square, it has the peak near the system natural frequency, and if S f f of omega, for 

instance, if it is a band limited function, the output power spectral density function will 

be product of these two; so, that would mean, this system will permit only those 

frequency components in the input, which are near the large values of system transfer 

function to be manufactured, in the output power spectral density function or in other 

words, this system behave as a,  if it is a filter, to pass the frequency components in the 

input, selectively through its transfer function. 
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So, to see that we can consider now, a few input output relation, suppose red line is the 

power spectral density function of excitation, this is this, and blue line is the amplitude of 

square, of the amplitude of system frequency response function, the product of this will 

be this. So, in the output most of the power is concentrated in this region, although the 

input has frequencies, a several other frequencies, the output chooses to have higher 

power near the system natural frequency, so that sense the linear system is behaving like 

a filter. 
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So, this is a different choice of relative values of dominant frequency in an excitation and 

dominant frequency, in the system transfer function, and output, now peak at a frequency 

which is neither the, a natural frequency of the system or the dominant frequency of the 

output. So, this is off resonance, the input and the system transfer function or off 

resonance. 
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Now, if their peaks come too close to each other, the input as well as the system transfer 

function, again there substantial increase in the energy, and you can see that, is almost 

like a resonance condition in deterministic analysis. So, the output power, the average 

power in output process, tends to get magnify in those frequency regions, where there is 

a higher energy in higher power, in the input and the value of the transfer function is 

high. 
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We have been talking response in terms of only displacement, include also as response in 

terms of velocity or reaction transfer to this support, so on and so forth; so, that would 

require, now, description of derivative processes, I already introduce the notion of mean 

square derivative for a random process. Now, let us see what is simplification on 

frequency domain description; you recall, now the power spectral density of x of t and 

auto covariance of x of t related through this Fourier transform, this pair of equations; 

these two functions for a Fourier transform pair. 
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Now, we have already defined the auto covariance of the derivative process can be 

obtained a differentiating the auto covariance of parent process twice, in this manner. 

Now, for R x x of tau, I will use the representation in terms of power spectral density 

function, and if I now implement the differentiation, I get R x dot R x dot tau to be 1 by 2 

pi minus infinity into plus infinity omega square S x x of omega into exponential i 

omega t d omega. Now, if you compare this worth, the definition of Fourier transform 

pair, you will see that the Fourier transform of the auto covariance of the derivative 



process is nothing but a power spectral density would be omega square S x x omega; this 

is the power spectral density function of the derivative process. 
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Similarly, you can consider the auto covariance of acceleration process, if x of t 

displacement x double dot will be acceleration; this will be derivative second derivative 

of the auto covariance of the velocity process. So, using a similar logic, you can show 

that, the power spectral density function of the acceleration process is given by omega to 

the power of 4 S x x omega. 
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Now, let us return to the problem of single degree freedom system under Gaussian white 

noise excitation and consider the response analysis in frequency domain. So, we have the 

system equation, here m x double dot plus c dot plus k equal to f of t, this system starts 

from rest, the expected value of the expected value of f of t is 0, is auto covariance, is 

given by the directed delta function as shown. Now, the input and output relation will S x 

x of omega into h of omega whole square s f f of omega, where s f f of omega constant, 

so I get i into h of f omega whole square, therefore, and h of omega here is 1 by m omega 

n square minus omega square plus i 2 eta omega, omega. So, this is the power spectral 

density function of the output process, if you recall we have already derive the auto 

covariance response process, by using time domain representations and steady state and I 

already shown that, the auto covariance function is given by this function. Now, I have 

now derived the power spectral density function of the response in the steady state, I will 

leave it, in a exercise to show that, if you take the Fourier transform of this indeed get the 

auto power spectral density function, that we are just now derived or another words, 

show that the auto covariance given by this and the power spectral density function given 

by this, for the Fourier transform pair. Similarly, we know that R x x of 0 is the variance 

and that is given by i 4 eta omega cube m square, the area under power spectral density 

function is also related to the variance; so, the variance in steady state can also be obtain 

by a pure frequency domain analysis, and the exercise is to show that, the area under the 

power spectral density function is indeed the variance which is this, which has been 

obtained by a time domain analysis. Now, evaluation of this type of integrals requires the 



use of Cauchy’s residue theorem and will returned to this, is the one of the next lectures, 

but to prove this, the hint is that we have to use that residue theorem. 
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Now, the general remark at this stage is in order, the steady of random vibrations can be 

viewed from two perspectives; one is motivated by our interest is study of failures of 

structures under loads, such as earthquakes, wind, waves guide, way unevenness and so 

on and so forth, but there is yet another important application of random vibration 

principles and that occur in laboratory work. Actually, one of the basic issues in 

experimental steady of linear dynamical system is the measurement of frequency 

response functions. The whole idea of the whole process of measurement of dynamic 

characteristics of engineering systems, that would mean, frequency response functions 

and from that the natural frequency model, damping mode, shapes etcetera also these 

based on principles of random vibrations. 
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Now, there are certain results in this context that can be derived as this stage, based on 

whatever we have learnt so far and they can be listed like this. So, let start with input 

output relation in time, in frequency domain. So, if x of t is a input for system with 

impulse response h of t, y of t is convolution between x of t h of t in; similarly, if X of 

omega is the Fourier transform of the input, the Fourier transform of the output is 

obtained by multiplying this system, frequency response function with the input Fourier 

transform, that is this. And the input output relation for power spectral density function 

we already define, but now let us consider cross power spectral density function between 

y of t and x of t, this by definition is this, limit 1 by T Y T of omega into X T star of 

omega. Now, I know y of omega H of omega into X of omega, I will substitute that here 

and I get X Y X of omega is h of omega into S x x of omega; based on that, I get an 

estimate the formulae for the frequency response function, which is S y x of omega 

divided by S x x of omega. So, if you are doing an experiment, you have gather time 

histories of X of T, Y of T and use statistical procedure, to estimate S y x of omega and S 

x x of omega, these are fairly standard tools, we will discuss with later. And if you take 

ratio of that you get H 1 of omega, whenever we measure x of t of t, there will be 

measurement noises that will create certain problems. 
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Before I come that, we can also consider another relation that is exist namely, now if you 

consider power spectral density function of the output, this is the definition, and if Y T of 

omega, if I write h of omega into X T of omega, and examine in this relation, I get S Y Y 

of omega to be H of omega into S X X of omega. So, I get another definition for the 

frequency response function, which is S X Y of omega divided by S Y Y of omega. 

Mathematically H 1 and H 2 are the same, but an experimental what we want do the 

same, because the measurement of noise and another issues; we also have S Y Y of 

omega as the square of the frequency response function multiply by S X X of omega. So, 

if you are interested only the amplitude of frequency response function, this is yet 

another formula, for that we divide the output power spectral density function divided by 

the input power spectral density, you get this function. 
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We can define now the coherence function between X and Y, if you do that this is 

actually the definitions square of the coherence, if you substitute all the formulae, just 

now the, derive, you can show that coherence function is 1 between X and Y, this is not 

surprising because system is linear; you can show that, this coherence function is a ratio 

of H 1 and H 2, this is small exercise. In a experimentally world, if you are to measure 

the coherence and plot it, you will see that, it will not be uniformly equal to 1, because of 

presence of measurement noise or because of structural non-linearity is so on and so 

forth; so, the plot of coherence function and is departure from unity is taken as a quality 

of measurement of frequency response function, if it is deviates too much from one and 

certain frequency, the same frequency, the transfer function is not measured acceptably. 
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So, we can summarize the important of coherence of FRF measurements; if you consider 

this question, we should notice the measurement of FRFs is adversely affected by several 

factors, such as structural non-linearity, electronic noise and there are several signal 

processing issues, lateral in the course we may have to discuss this, so, by because of 

this, the coherence will never be equal to unity, I mean, not always be equal to unity; so, 

therefore, coherence serves as a valuable tool in assessing the quality of measurements, 

greater the departure from unity, one poorer the quality of measurements. 
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Now, an application of dynamics of single degree freedom of system under white noise 

excitations; this application arises in the context of the modeling earthquake ground 

motion, imagine that, this is the bed rock and overlying this, there is a soil layer and 

when an earthquake occurs, whatever displacement, that occurs at bed rock level 

propagates through the soil layer and appears as the ground shaking. We are basically 

interested in way the ground shakes, because the buildings are housed on this. Before the 

construction of any structure, if you study the ground motion, we will call it as free field 

ground motion, in the sense, there is no engineering structure yet constructed on that 

structure; so, most of the course of practices define this free field motion in some 

manner. Conceptually, to make a model for free field ground motion, one of the model is 

proposed by Kanai Tajimi, in this model, it is assume that the bed rock level the ground 

acceleration is the white noise and the soil layer is modeled as a single degree freedom 

system, where m g is the mass of the soil layer, k g is the stiffness and c g is the damping 

and this is the free field point and this is the bed rock point. The free field motion, thus 

that characterized in terms of the power spectral density of the base motion, multiplied 

by this transfer function, associates with this soil layer and how does take place. 
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If you write the equations now, this is the equation for the total displacement of the 

ground, that is the total displacement of the mass, so this is m g e double dot, c g is the 

damping force which is the function of u dot minus x b dot, similarly k g is spring force 

which is function of e minus x b. So, if you now write from this, this expression for 



absolute acceleration in the ground level, we get this expression, where c g y m g is 

written as 2 eta g omega g and k g by omega g is written, k g by m g is written as omega 

g square; so, this is the expression for the total acceleration at the ground level. Now, you 

can as well as define a relative displacement u minus x b and the relative displacement is 

governed by this equation, where in the right hand side, I get the acceleration level at the 

bed rock, whereas here, on the right hand side, you will get damping into the velocity 

plus stiffness into the displacement at the bed rock level. Now, we can do a frequency 

domain analysis of this absolute acceleration, and if I do that, we get the Fourier 

transform of the absolute ground acceleration, can be written in this form and based on 

this, V T of omega is now obtained as through the input output relation of this equation, 

if you substitute that here and use the definition of power spectral density functions in 

terms of this expectation, I get the power spectral density of the ground acceleration to 

be in this form; this is the well known Kanai Tajimi power spectral density function. 

This derivation is based on how a single degree of freedom system response to support 

motions where acceleration support, but acceleration are modeled as white noise 

processes; omega g is the natural frequency of the ground, eta g is the damping in the 

soil layer, i is the intensity of shaking at the bed rock level. 
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A typically, the power spectral density function appears in this form, it is new model and 

this peak occurs at the natural frequency of a soil layer and this bandwidth depends upon 

eta g, the damping in the soil layer. 



(Refer Slide Time: 51:28) 

 

So, this power spectral density function, essentially captures the possibility of ground 

resonance, because this system is modeled as a single degree freedom system, there is 

one possibility to allow for one resonance and this is very easy to use random vibration 

analysis, because in frequency domain analysis, the power spectral density functions are 

obtain by simple multiplication of transfer function square into the input power spectral 

density function; so, it is very easy to use the problem here or that this model does not 

recognize, that the ground acceleration is actually the non-stationary random process and 

the soil layer itself is taken as single degree freedom system, whereas soil layer is a 

continuum, it can have probably more than one nature frequency, in the frequency range 

of interest; this can be remedy, this can also be remedy. 
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How to introduce non stationary into ground acceleration? We can multiply the 

stationary random process, whose power spectral density is Kanai Tajimi power spectral 

density by deterministic envelope function; these are deterministic envelope function, 

captures the non-stationary trend that is observed in earthquake ground motions. So, an 

example could be S of t could have a Kanai Tajimi power spectral density and this 

envelopes, for example, could be sums of this, we have seen, just a seen while before and 

a similar curve like this, in the sense, they essentially capture this type of behavior in 

time, the envelope functions either they can be expressed as differences between 

exponential or even if you take e raised to minus eta, also has qualitatively this type of 

behaviors. So, both this type of models has been proposed in the literature to capture 

transient behavior. 
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So, this is how conceptually looks like, this is sample of S of t and upon multiplication 

by E of t, I get the transient realization of a non-stationary random process; this red line 

that is shown here is the envelope. So, this models that we are develop, we are able to 

now proceed a bit further and we are able to develop simple models for earthquake 

ground motions. 

(Refer Slide Time: 54:04) 

 



(Refer Slide Time: 54:17) 

 

(Refer Slide Time: 55:31) 

 

Now, how does a system itself response to Kanai Tajimi ground motions; so, this is my 

structure, that means, I have bed rock, this is ground and on this I have my structure, the 

way we model, it is, this itself is modeled as this is soil; the output of this is say u of t, a 

simple version of modeling would be, to this is my structure, so call it as m k c and this u 

of t appears as support motion for this structure, that means, there is a kind of a 

cascading assumption. We could as well as make a 2 degree freedom system. this is soil, 

this is structure, in this model we are allowing for possible interaction between structure 

and the soil, whereas here we are ignoring, that if we consider this simple situation, first 



it is quite straightforward to deduce the output power spectral density function, by 

simply multiplying the transfer function of the soil, with the transfer function of the 

structure and the power spectral density at this bed rock level. So, this is so-called 

cascading assumption which can easily be implemented, in this particular case. With this, 

we will conclude this lecture. 


