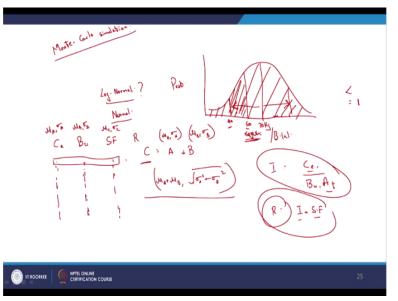
Environmental Remediation of Contaminated Sites Prof. Bhanu Prakash Vellanki Department of Civil Engineering Indian Institute of Technology – Roorkee


Lecture - 08 Risk Assessment Stochastic Approach

Hello everyone, again welcome back to the latest lecture session. So again a quick recap of what we have been up to right. We have looked at or we have been looking at anyway a risk assessment right in the context of trying to understand the extent to which you need to remediate a particular contaminated site right and in that context, we looked at two approaches or you know one in greater detail anyway the deterministic approach.

In that case, let us say we estimated various variables with a point estimate. For example, body weight, I think we took it to be 70 kgs right. Though, we do know let us say the exposed concentration, exposed population pardon me will not have or everyone in that particular exposed population will not have only 70 kgs right. So obviously the risks associated will vary from one person to the other.

But you know that particular variation in risk is not going to be captured when you look at the deterministic approach right. So in that context, we talked about treating the variables as variables right and we looked at or try to understand briefly anyway the probability distribution functions right.

(Refer Slide Time: 01:29)

And right we looked at probability distribution functions or how is the probability distributed and typically let us say you know for that particular example let us say or let us say this can be concentration or typically let us say body weight let us say right. So we have the mean to be 70 kgs and then the standard deviation let us say right that would capture I think mu +orsigma will capture I believe 67% of the data right and so on.

So here let us say if I want to get the concentration of particular or you know what is the probability let us say the body weight will be within a particular range as in 30 to 40 or 40 to 50 how do I get? So if this is the case for 40 and for 50, so what are the chances that the body weight would be between 40 and 50 now? I need to get the area with under this graph between these two limits I guess right.

Again, what would be the probability or the total probability or what would be the total area here let us see under this graph now. It should be $\langle or=1 \rangle$ because the probability can never be ≥ 1 obviously right. That is just one aspect that we need to keep in mind right. So in this context, we also talked about log normal distribution let us say right log normal and in that case, what did we, how did we understand this particular distribution log normal.

We call the particular variable to be log normally distributed let us say right. When the natural logarithm of that particular variable let us say is normally distributed, we consider that particular variable to be log normally distributed right and typically in our case or you know in our case of risk assessment, we come across normal distributions and log normal distributions right.

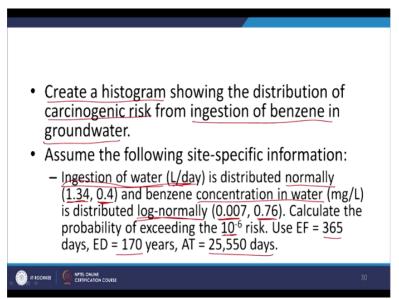
So you know again taking this forth let us say if I have C=A+B let us say and mu A and sigma A and mu B and sigma B and I want to calculate you know or estimate C let us say. So what is one particular way obviously, the simplest case would be let us say mu A+mu B standard deviation would be the square root of sigma A square+sigma B square right. So obviously this is the simple case right which obviously we are typically not faced with.

For example, if I look at the intake let us say, intake has I believe exposure concentration, body weight in the denominator, averaging time here let us say right and so on and risk would obviously have intake and the slope factor. So there are multiple other variables right and different kinds of what you say variables too right and how do I take these into account and

the relevant complex calculations and try to come up with my particular calculation for risk here right.

So in this context, typically what you want to do right, how do you want to go about it, so you are going to let us say create, not create I guess, generate a particular set of data that would conform to that particular distribution of that particular variable. For example, let us say if we assume that this exposure concentration that we have here is normally distributed let us see.

So I am going to generate a set of data let us say which are going to have the particular mean and standard deviation that would be that would that we have for this exposure concentration, similarly for body weight and so on. So once I have that as in I say generate a set of data for exposure concentration, body weight and slope factor right such that the relevant variables are not variables I guess.


They follow their particular distributions so mu A sigma A, mu B sigma B, mu C sigma C right. I am going to calculate let us say not calculate, come up with different what do we say sets of data that would conform to that particular distribution function let us say right and how can I then calculate the risk. So I am going to calculate the risk as in I will consider this particular set let us say.

And then calculate the risk according to my relevant formulae here right. So here obviously, the case needs to be that they need to be randomly generated right. Obviously, I am trying to look at all the permutations or combinations that are feasible, let us say person with low body weight exposed to very high concentrations let us say or person with high body weight exposed to very low concentrations.

So you know different cases out there right, all such permutations and combinations obviously need to be taken into account in this particular case. So obviously where does this come from? That comes from Monte Carlo simulation what is called I believe Monte Carlo simulation. So in that case, again what is that about? You generate random numbers let us say that conform to that particular distribution function.

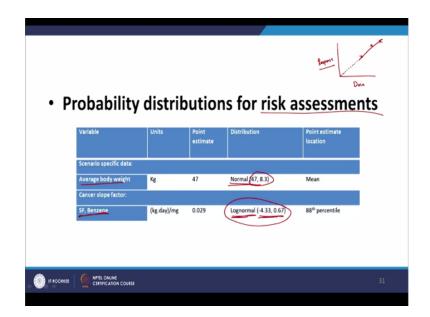
And again we are going to have an example soon, so we are going to generate random numbers and use those particular data that we have or random numbers that we have generated to be to then calculate your variable or in this context risks that you are going to look at let us see right. So let us see what we have out here and I have an example here.

(Refer Slide Time: 06:46)

So here we are going to have to create a histogram right showing the distribution of carcinogenic risk again from only one pathway the ingestion of benzene in groundwater right and we have the relevant conditions. So here looks like instead of the point estimate for ingestion of water let us say, we say that the exposure concentration or you know the concentration that they are ingesting has a mean of 1.34 standard deviation of 0.4 and is distributed normally.

And again benzene concentration I guess let us say okay ingestion rate I guess is liter per day is normally distributed. As in, I might drink more water let us say, maybe I am more physically active and another person maybe not or maybe his body does not need as much amount of water. So obviously the rate of water intake is going to be little different and that is what we have here.

The amount of water ingested per day is distributed normally with its mean and standard deviation here and the benzene concentration in that water again it seems to be log normally distributed right. Again, what this log normal distribution about? It means that the natural logarithm of this concentration in water is normally distributed and that particular distribution has 0.007 as its mean and 0.76 as the standard deviation.


So then we are asked to calculate the probability of risk exceeding 10 power -6 which is obviously the typical value right and expose your frequency and duration, averaging time. Exposure duration again this is from (()) (08:13) the relevant standard book or reference that we are following for this course and you know the relevant example from there and maybe there is a minor typo here.

Because the exposed duration obviously seems unreasonable, so we are going to look at that and obviously maybe we can just change it to 17 years which seems a more reasonable value and look at that particular case too. So again how do I go about this? As we talked about it, we are going to look at Monte Carlo simulation right and what are we going to do in that particular case, we are going to let us say come up with or generate random numbers that would conform to let us say for the case of ingestion of water.

We are going to come up with the set of data or random or generate random numbers that would conform to let us say this particular distribution which is normally distributed with a mean of 1.34 and standard deviation of 0.4. Similarly, we are going to come up with the values for the different other variables, not come up with the values maybe, come up with generating random numbers for the different variables.

And then use those particular random numbers for each of these variables to be able to calculate your risk I guess right. Again, I think Monte Carlo simulation I think the root lies in the relevant person who came up with it. I think he was analyzing I think gambling and a particular case of what do we say flipping the coin I guess in a particular gambling house or I think Casino.

Anyway, I think you can look up the relevant history in that context and they were trying to predict let us say the relevant outcome and such and in that case you know, he came up with this particular I guess time-tested procedure which is logically sound too I guess right. (Refer Slide Time: 09:49)

Again, moving on, so again what are some of the other what we say variables for which we use in the risk assessment. So obviously body weight and here we are going to have distribution to be normal and with mean and standard deviation and slope factor benzene rather than having a point estimate though, we are going to have a log normal distribution that these relative mean and standard deviation.

So these are for the log normal distribution as in the mean after you take the natural logarithm of the slope factor right. So again slope factor, how do we get that, we get that from the toxicity studies and such if you remember, again we have this dose here and response here which is a carcinogenic tumor or such and we have high doses that we are going to look at let us see and I fit some particular model.

And we have linearized a multistage model right, we are going to assume that it is linear even at lower concentrations and again this is from accelerated trials as in over a shorter period of time at high concentrations again from animals to humans. So there are considerable uncertainties involved and thus obviously in this stochastic approach rather than using a particular point estimate, we try to understand the particular variation by considering that.

It is a log normal distribution with the relevant mean and standard deviation. So let us go forth and look at how to get this done right.

(Refer Slide Time: 11:09)

1954	ing + (t +) une – Koet		and the	Con El anti	Data Re-			and a				\$17 HW															8 - 1
ion fr	a Ca	in Other		Rafrodt All -	Connections	14 1	t I Son	Y	6 Close 6 Respon 9 Adress	1 to	to Aur	icalles to a	Euta Euta Inta Too		n nitard Analysis	1	p Ungroup Se Out	DLU -1 H Annal		Contraction of the second							
A		(1	6		ALCONG.			e. a. 1999						0				274		1003	190						
<u> </u>	A .	0	-			~		-		D					6		н							M			
Ingest	ion of water	Ang.	body wrig	ivî Log v	rives of be	uene in	water	De	nzer e in	water(1	ŧd	At	, w	ater ingenti ADIN		4) L	a si	ы	Also Contra	106-88				
		_															ION	W6#			,	ICR/0	norwo				
						A:03 643	trs evaluation				t	×															
						1.1.18	Analysis fo Carditional Fura Currie Internet As	SPak - Vi Sum Wes cy Teste Islant VB	n ed		OL Carcal Browse	_															
						2	Lookup Will Salver Add	443 #		6	ujonatio	=															
							alysis Taoli																				
								data ana	lysis taolai seering an	for shelid alysis	ical and																
	Firel (2)	nal , St	eets Sh	Ntl 1	wet2Sh	et) (t)/						_				T.										1
ady .						_										_								0	10.1	0	Ū.

So here I have the relevant excel sheet here. So ingestion of water right and I am going to look at that what is the ingestion of water, so I am trying to generate a data set that would be what we say representative of that particular true population. So in this context, let us say if I use lesser or what we say generated lesser random numbers let us say 100 or 10 and so on let us say.

It might not capture the true picture or you might not get the smooth distribution that you are looking for. Obviously, to get a smooth distribution what do you need to do, you need to obviously increase your particular number of random numbers that you are going to generate. So because I looked at this earlier let us say looks like at around 10,000. Let us say I am going to get the relevant what do you say smooth distribution function.

So I am going to look at that but I would ask you to try it out with maybe 1000 or 100 random numbers and look at how the relevant solution changes I guess. So in this case, we are looking at ingestion of water and then I am going to go to data and then data analysis right and then I am going to go to random number generation here, random number generation.

So in case you do not have this in your particular excel sheet let us say or excel file, you need to go to options excel options and then go to add-ins let us say and then manage add-ins and then add it from this particular toolpak here let us say right analysis toolpak I guess right and solver add-in if you want to, certainly analysis toolpak. So again I come back to where I was

earlier data. So data analysis, so I am trying to create 10,000 random numbers that would conform to that particular distribution.

And I think I have it out here what are the values here? It is normally distributed with 1.34 and 0.4 being its mean and standard deviation.

Data None Species Service Value (Species Species Species Value (Species Species Value (Species Species Value (Species Species Value (Species Species Species Value (Species Species Value (Species Species Value (Species Value (Speci									
Image: Internet into the state of the s									
Control to the state of								9 -	
A B C D C F G H L I K L M N D beginned water Ask, boh weight lig under of beaure in value Beaure in water ingeninginginging I I A N N D I I N N D bedre drawed I I I I I I I N N D I I I N N D I	Ten ins ins for data site of the set of the	laher							
kepsined outer Ag, beh unjeft lag outer of beauer in outer 1 <u>1 4 4</u> Water ingenion/phg ¹ /4 (top) 1 <u>1 6 4</u> Water ingenion/phg ¹ /4 (top) 1 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 3 1 2 3 4 5 6 7 8 9 0</u> 2 <u>1 3 1 2 1 2 1 4 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	<u>A</u> = 0 + 54								-
11 14 at Total rightshiphight 1 104	A 8 C D 8 F 6 H 1	1	К	-		м	N	0	7
	1 1 <td></td> <td>HISA 1 ROIV/</td> <td>K LOG Ref facer</td> <td>ROK</td> <td></td> <td></td> <td></td> <td></td>		HISA 1 ROIV/	K LOG Ref f acer	ROK				
1 2 3 4 5 6 7 8 9 0	16 € Gript Engl: 542 15 17 0 ⊙ tax rotations (p:	E	a (Ç,				X	
@ # \$ % &() → \	20 20 20	1		3 4				9 0	
9 • • • • Bad(2), fraz, 9ees, 9eet, 9eet, 9eet, 9	24	0		\$ %	8				
	8 2 2	0) !						
🖬 🔿 hype how to search 🛛 🚯 📅 🖉 📾 🦿 🔳 📡 😗 🔯 🚳	huly	abe	۰ ©),					

So I am going to go back here, 1.34 right so it is going to be equal to 1.34 and I think the standard deviation was 0.4 right and output range let us say should be here and obviously here I say that the number of random numbers that I want is 10,000. Again, the bigger be data said that I am looking at or sample size obviously. The truer your prediction will be to the actual what we say solution or the actual case right say.

So here obviously I am looking at 10,000 and it is normally distributed. There are other distributions here but obviously I am going to look at normal and so on and so forth and then I am going to ask you to come up with this particular data right. So obviously it is going to take some time. Again to understand what we are up to, what are we doing, we have different variables rather than looking at one-point estimate to be able to capture the variation inherent within a particular scenario let us say right.

You are going to have different particular combinations as in one particular example I just mentioned was a person with you know greater body weight exposed to lower concentrations, a person with maybe lower body weight exposed to higher concentrations and maybe drinking more water and such let us say right. Maybe this particular guy with the lower body weight let us say is working out there in that particular field a landfill.

And maybe the guy with the greater body weight exposed to lower concentration typically sits only in the office let us say right. So to look at these aspects as in one person will be associated with higher risk, one person with lower risk and so on. We look at or come up with these distribution functions that would try to you know give us a true picture or truer picture let us say or better picture of what the scenario is for that particular variable.

(Refer Slide Time: 14:52)

2	a Ca Ca		Allen Dafa Review Connections African Connections Connections Connections	н 🔢 🝸 🖁	Chor Pringoly Advanced Calamics Explorates			Real of Contract o	TU TU DU "I Hide Det insup Ungroup Sabhattal	Gi Luta Analysis at Ly Solver						
	4 • (*	fa														
	Α	8	C		D	6	- F	6	н	1 1	к	- U	м	N	0	
Inges	tion of water Ar	og, body wright	Log values of benzen	ie in water - Bena	ene in water(rng/L)											
							Ed	At	Water ingestion(mg/kg*d)	Log-SF SF	RISK I	OG-RSK				
	1.252135991	45.87173658		0.436993605	0.659025134	365	62050	25550	15.94(01032	2,20237 0.06621						
	1.238541139	45.86277137		1.049754593	2.856949917	85	62050	25550	68.2063415	-4.01519 0.01802						
	0.526353643	44.69740657		0.246309112	1.229162035	365	62050	25550	14.6184849	4.45165 0.01165						
	1.438838427	51.21228554		0.397103287	1.482509562	365	62050	25550	36.68781161	4.70468 0.00905	3 3.325-01					
	1.202860022	53.62677598		0.000122117	0.999877891	365	62050	25550	19.88035404	4.71352 0.00997	3 1.780.01					
	3.4542896	43.99897216		0.41324318	1.511712599	365	62050	25550	44.30(82552	-4.47025 0.01144	4 5.07E-01					
	1.635836799	21.05141222		0.578455894	1.203282726	365	62050	25550	122.8350407	-4.13439 0.01600	6 1.970+00					
	1.279999725	43.48107689		0.106353371	0 899106873	365	62050	25550	23.46197935	3.63012 0.02651	3 6.725.01					
	2.298156306	34.42923254		-0.10323858	0.90191177	365	62050	25550	53.36542332	4.72621 0.0088						
	0.987321602	49.63577886		-1.509348129	0.22105408	365	62050	25550	3.8976782	4.85889 0.00768						
	1.943425199	43.98540319		0.504572398	0.603763691	365	62050	25550	23.62233493	-4.46438 0.01153						
	1.359605887	46.13268137		1.597276186	4.914923487	365	62050	25550	128.4000195	4.59777 0.01007						
	1.145568223	37.99068873		-1.044769377	0.351772296	365	62050	25550	9.402639551	4.06532 0.01736						
	1.001280547	22.65600643 50.40041178		0.038629479	1.856474909	365	62050	25550	116.1099579 13.92163827	-3.87366 0.02028 -5.30023 0.0049						
	0.871781901 0.981552677	48.55032855		0.092580441	0.911758214 0.537387468	385	62050	25550	9.62309391	-4.01765 0.01799						
	1.14356589	53,25595493		1.250878284	0.236253275	365	62050	25550	5.39323399	4.52452 0.0108						
	1.006491952	56,21345419		0.51959367	1.681369329	365	62050	25550	42.57389654	-4.34266 0.01293						
	0.97967457	36.22940131		0.416/04221	1.548032424	365	62050	25550	37.10(02071	4.1023 0.01651						
	1.41562269	49.20398232		0.648904626	1 913443744	365	62050	25550	48 30551149	3 0595 0.04693						
	2.184595298	37.10170159		0.120648002	1.128227709	165	62050	25550	58.88679910	3.89910 0.02082	5 1.318+00					
	1.306930318	50.8432953		0.823512693	2.27848943	365	62050	25550	51.9169901	4.88462 0.00756	3.956-01					
	0.639205228	49.12298846		0.777728388	2.12663126	365	62050	25550	25.10638283	-4.52708 0.01083	2.716-01					
	1.129322838	45.5433060		1.019023131	2.770487038	365	62050	25550	60.89665166	3.04043 0.04783	4 2.91E+00					
	1/90058343	44.60157448		0.844545246	0.429752245	365	62050	25550	16.23301367	-4.98791 0.0058	2 1.11E-01					
	1.206748112	63.27956152		0.413630919	0.648325306	365	62050	25550	10.87021058		3 7.546-02					
	0.752244506	60.251778		0.395958009	1.491762056	365	62050	25550		4.45384 0.01163		2				
	Final (2) Final	Sheeth Sheet	ti Swet2 Sheet3	A PHIAMO2	0.914072106	300	63350	10110	1.1 301793.04	3 35336 .5734.00	U UK AL					ł
													313-10 10	(A)		

Once we do that, we generate random numbers let us say for each of these variables and try to look at these particular or try to calculate the risk from these particular random generators. The key here is random right, so we are going to assume that the greater, as we keep increasing the sample size obviously not assume I guess, you can see that out there. You see that the risk let us say are going to be what do we say or you are going to get or approach the truer picture as you increase the sample size let us say.

As in, I would think in layman's terms let us say as if you are capturing all the inherent variations or permutations and combinations within a site. So here I have the ingestion of water, I have that. So the next tab I have I guess average body weight, let us see what I have there and body weight I think I have it out here, average body weight again normally distributed with 47 being the average and standard deviation being 8.3.

So I am going to have to get that again, so again data analysis, so random number generation. So 10,000, the mean now is going to be equal to so I am going to set it up in the relevant cell here and again still normal distributed and 10,000. Let me just make sure I have the relevant values 47 and 8.3. So I am going to have the mean to be 47 here and standard deviation to be 8.3 and then everything seems fine okay right.

So again what would happen let us say, if you rather than taking 10,000 what do we say or generating 10,000 random numbers, you consider only let us say 100 or such let us say. Let us say then again as I guess is logical to you know as I talked about or use the layman's terms, you are looking at different combinations or you know permutations out there let us say right. So all those particular combinations might not be captured right.

And thus let us say your particular final solution when you are calculating the risk let us say, well you know the distribution let us say will not be what can I say I guess uniform, not uniform pardon me, it would not be smooth right. The distribution would not be smooth, so if you want to get to the truer picture obviously, you need to have a greater set of data and thus that is why we are going with 10,000 I guess.

So log values of benzene and benzene in water, so I believe I have log values of benzene in water here because we say that the benzene in water is distributed log normal right. So the logarithm or natural logarithm of this benzene concentration has a mean of 0.007 and standard deviation of 0.76. So again I am going to generate that particular data here let us see. So again go back to data analysis, random number generator.

It is still normal as in I do not have the case here for log normal distribution as you see. So normal again 10,000 and here I think I have 0.007 and here 0.76. Let me double- check that, 0.007 and 0.76 that is how the benzene concentration is distributed. As you see, let us say the mean is low right 0.007 I guess, again I think it is milligram per liter but as you see compared to this particular mean, the standard deviation is very high but again that is for log normal.

Let us look at our distribution again out here. So 0.007, output range 2 I guess right and this particular cell right and I have the relevant case, the log natural logarithm of this benzene concentration in water has a mean of 0.007 and standard deviation of 0.76 let us say right. So

I am going to generate that and obviously here in the second or the fourth column, I have benzene in water.

So how do I calculate that and now I am generating the natural logarithm of benzene concentration in water. So obviously to get the benzene concentration, actual benzene concentration in water, I am going to come up with the exponential or use the exponential function I guess right. So let us see where we are. So obviously because I am generating a lot of data or in this case 10,000 data sets I guess.

This particular system is taking time I know but that is usual. So here we have the benzene concentration in water. How do I get that from the log normal distribution? Here I have the log or natural logarithm values of benzene in water. So thus to get the benzene concentration in water, I am going to have to calculate it the exponential of this particular cell right. So obviously we have that and I have it for all the data out there.

And exposure frequency, let us see what we have out here, so exposure frequency is 365 days and exposure duration is 170 years right and let me go back to my particular case here. Exposure frequency is 365 days let us say and exposure duration is I believe 170 years as I mentioned you know probably a typo but you know let us just calculate that and you can calculate for a more suitable value of 17 years maybe.

Averaging time, again because you are looking at carcinogenic risk is going to be equal to the lifetime which is 70 years let us say right, 70 years and that is 25,550 days. So here that is going to be equal to 25, 550 days let us say and here I have the calculation for intake I guess. Ingestion of body water let us say benzene concentration, exposure, frequency, duration/body weight and averaging time.

So have that out here, so again similarly I am going to get it for all the particular cells yes and again here I have the logarithm of the slope factor and thus again need to generate the relevant data. So let us go back to that particular cell here right, so I think the slope factor has the log normal distribution as we can see out here right and the particular distribution has a mean of -4.33 and standard deviation of 0.67.

So let me try to plug that in. Again, how do I do that? Data analysis, random number generation right, again 10,000 data sets and here I need to plug the relevant values in -4.33 let us say right and the output cell has to be out here and what is the standard deviation please, let us go back to what we have, it is 0.67 pardon me, it is 0.67 and let us say I am going to say okay. So here we have the data for the log normal distribution.

Again, thus I have it labeled as logarithm of slope factor, again keep in mind that it is natural logarithm. So I have generated 10,000 random numbers and now to get the slope factor obviously, it has to be the exponential of this particular cell let us say. So this is the actual slope factor, so I calculated that and risk obviously is intake*slope factor in this context of carcinogenic risk right.

That is what we have water ingestion*slope factors. So again what do we have, we have 10,000 cases of ingestion of water or types of ingestion of rate of intake of water, 10,000 body weights let us say and 10,000 concentrations of benzene in water but same case or we are assuming that it is uniformly distributed for exposure, frequency, duration and averaging time and so on and so forth and we are calculating the risk now let us say and here I have the risk.

(Refer Slide Time: 22:51)

9	Harry		property Permites Data	Review View	400bat			W Zhazandou										w
				uniose and				-		-	n am m	a al casa a	nal (Pypons Analys					
\$	G# G	1 L H	J C yrs			1004			,	1			al 2 salver					
١.		am From Oth	wr Exizing Ratioch	AL 500		fedt			solidate ini		up Ungroup labb	rai						
11		ed Sources External Data	Connections All Connection		Set & Filter	Catan	re Daplicates	Data Tooh	100	dysa -	Outire		G Analysis					
	011	• (1	fe 0															_
	<i>i</i>	6	JA 0		×		м	N	0	0	0		5 T	U	v	W X	_	
		6			K		м	N	0	P	Q	R	5 1	0	v	W X		,
	Ed		Water ingestion(ing/kg*4)	Log SF 5		LOG-RISK												
	62050	25550	15.94601032	2.70737 0.06					etsend n			ednesels mu				Histogran		
	62050 62050	25550 25550	68.39062435 14.6184849	-4.01599 0.01				-3.4E-05 0.029384	1 9953	0.01%	0.02938365		19.64% 19.68%					
	62050	25550	36.68781161	-4.70468 0.00				0.058.03	2203		0.17657246		0.725	2 ¹⁵⁰⁰⁰	·	100	20%	
	62050	25550	19.88035404					0.087315	04		0.29114351		0.75%	10100		99.8	10%	
	62050	25550	64 30(82552	4.47825 0.01				0.316437	1		0.55320336		0.285	\$ 5000	· · · · ·	99.6		freque
	62050	25550	122.8150407	4.13479 0.01				0.345035	ò		0.20129022	2.1	1.825	· ·	8585	232		· Carnel
	62050	25550	23.46197935	3.63012 0.02	633 6.226.0	1		0.374672	4	99.3556	0.64055665	2.1	0.82%			265		
	62050	25550	53.36542332	4.72621 0.0	886 4.736 0	1		0.20329	2	99.77%	1.25202965	2.1	9.84%					
	62050	25550	3.8976787	4.86889 0.00	NR2 2.59E 0	2		0.232908	0	99,77%	1.31026517	2 1	0.865					
	62050	25550	23.62233493	-4.46418 0.01	1514 2.726.0	3		0.262026	,	99.78%	-3.4107E-05	1.1	9.87%					
	62050	25550	128.4000195	4.59777 0.01	1074 1.296+0	0		0.291144	3	99.81%	0.05830142	1.1	9.84N					
	62050	25550	9.402639551					0.320263	0		0.31643694		0.89%					
	62050	25030	116.3099579					0.349329	1		0.16302575		9.90%					
	62050	25550	13 97163877					0.378497	0		0.34937503		0.91%					
	62050	25550	9.622009391					0.407615	1		0.40261456		9.92%					
	62050	25550	5.99323995					0.436732	1		0.43673732		0.93% 0.94%					
	62050 62050	25550 25550	42.57789654 37.10602871	-4.34266 0.01	2907 - 5.51K-0 1615 - 6.14K-0			0.46585	0	99.84N 99.85N	0.5240856		9.94% 9.95%					
	62050	25550	48 3051140		015 6.146.4 011 3.3364			0.524986		99.85%	1.07732308		0.955					
	62050	25030	58.88679830					0.558308	i		1.57917360		0.975					
	62050	25550	51,9169901	4.88462 0.00				0.582321		99.89%	2,2711513		0.98%					
	62050	25550	25.10638283					0.611439	0	99.89%	2.44585787		9.995					
	62050	25550	60.89665166	3.04043 0.04	2814 2.916+0	0		0.640557	1	99.91%	More	1.1	0.02%					
	62050	25550	16 23301367	4.98791 0.0	1682 1.11E 0	1		0.669674	0	99.91%	0.1455547	0 1	0.00%					
	62050	25530	10.82021058	-4.91983 0.	073 7.546.0	2		0.648292	0	99.91%	0.23290393	0 1	0.02%					
	62050	25550	16 50544445	4.45384 0.01				0.72793	0		0.32026127	0 1	0.00%					
•	Control Final	(2) Find	Sheeth Sheeth Sheeth	Sheet]	AND LACK O	1		A 103010	0	00.01%	0.319,994,791	0.1	a aatu					
		147. 114														(10 (1) J) (1)		

And let us say now I want to capture how or understand how this particular risk is distributed let us say. How do I do that? I can look at data analysis, go to histogram out here okay and what is my input range here, obviously it is K here and bin range I am going to ask it to calculate that automatically but if you want to, you can give a particular bin range. So output range let us say I am going to want it have it somewhere here, that seems fine.

Sorted histogram, cumulative percentages and chart output, this will help me understand the data in a better manner but here I believe I cannot give it in this way because I am going to have this particular text here. So it starts from K to and I believe since we asked for 10,000 data sets, it landed 10,001 I guess right, so 10,001 okay. So let us see what we have here, so I guess excel came up with its own bin and frequency right.

And obviously what do I have here, this graph the way it is as you see here, let us say it skewed to the left.

(Refer Slide Time: 23:59)

And then here you see almost everything out here let us say right and again why is that the case because let us say we asked excel to come up with its own bin size let us say right or with its automatic bin size and obviously here as you see within a particular bin let us say, the frequency let us say is 9963 as in almost all the data is within a particular bin size let us say or again as you can understand from here what does this mean though?

If it is skewed in this way that it is not normally distributed, it has a different kind of distribution. So probably what would this mean, it probably means that it has a log normal distribution right and that is not unreasonable because we looked at normal distribution, log normal distribution and uniform distribution in our particular calculation of this risk right. That is what we have here.

And thus let us say you know it is not unreasonable or you know it is maybe logical to understand that we are again going to have a log normal distribution. So to understand that or capture that true risk let us say what am I having here, I am going to take the natural logarithm of that particular risk let us say and I am going to calculate that, yes I have that.

(Refer Slide Time: 25:07)

9	Hone In	ent Regellapost Formula			ien Acre																ų -	
	Web Test		Convertor	eries 14	Son A	1 5 m	1011	anto Aur	icates validatio	16.1°	an nhươ Malyss	Group Un	Poup Satrata	 Show detail Hide Detail 	24 salves							
	02	• (*	Connector		267	0.11001			Data 1	000			00004		- Anto	240		 				
1	6	н	1	1	К	ι	м	N	0	P	0	R	5	т	U	ν	W	< .	¥	Z	AA.	1
	Ar W 25550	iater ingestion)mg/kg*d) 15 94601032	Log 57 -2.70737	9 9 9 9 9 9 9 9 9 9 9 9 9		106-858																
	25550	68.39062435						b.														
	25550 25550	14.6184849 36.68781163																				
	25550	19.88035404																				
	25550	64.30682552																				
	25550	122.8350407		0.016/06																		
	25550	23.46197935	3.63012	0.026513	6.226-01	0.47474	1															
	25550	53.36542332	-4.72521	0.00886	4.735-01	-0.74903																
	25550	3.8976782	4.85389	0.007682	2.556.02	3.50851																
	25550	23.62233493																				
	25550	128.4000115																				
	25550	9.402639551																				
	25550	116.3099579 13.92163827																				
	25550	9.622009293																				
	25550	5,99323995																				
	25550	42.57789554																				
	25550	37.10602871		0.016515																		
	25550	48.30551149	3.0595	0.046911	2.27€100	0.818125)															
	25550	58.88679919	-3.807919	0.028875	1.238+00	0.206428																
	35550	51.9369901	4.88462	0.007562	3.935.01	0.9349	r															
	25550	25.10638283		0.010812																		
	25550	01.89665166		0.047414																		
	25550	16.23301367			1.11E-01																	
	25550	10.87021058			7.948-02																	
	25330	16.305944445		0.011034		1.0499																
	 Finel (2) 	Final Sheets Sheet3	Swet2	Sheet3)								4			_		 -				1
at the																		0.0	0.00 1004	(1)		

So I am going to delete this particular risk from here let us say right and here I am going to now conduct the data analysis on this particular set. Histogram again and here I am going to now go with K and now it is L here right, the next column. So again I want to understand the true nature or you know try to visualize it in a better manner let us say right. So thus I am again going for the log normally distributed or assuming that it is going to be log normally distributed I took the logarithm of the risk and that is what I have here.

And again I am asking excel to come up with the particular, so here the issue seems to be that you know the input range contains non-numeric data. As in, there are some cases maybe because I came up with 10,000 cases of risk. There are maybe you know cases where it has non-numeric data. So what does this mean now?

As in, I took 10,000 cases right, so within all these different permutations and combinations let us say, you know there might be some cases let us say where you know in the denominator or such it does not make sense and then we might get non-numeric data I guess right. So obviously histogram you know it cannot take that non-numeric data into the context. So let us say let me try something out here right.

So typically though what can you do, you need to go through this particular 10,000 list let us say. You need to go through that particular 10,000 list, look at where the what we say non-numeric data is and then you know obviously get that out of the picture or delete that let us say right. So obviously you know manually doing that is going to be relatively different. So I am obviously going to try to use excel here let us say.

(Refer Slide Time: 26:56)

6	0.0.0	0	Y resperies	н 🔢 🍸	A Clear The Bell		•	22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (http: 1 2014							
on i	Hom Ham Hom Oth Web Text Sources		Noh	11 Son Hear	Advanced Field to Remov		Concolidate	mbaz-é Analysis *	Group langroup Sabtetal								
	Cel External Data	Canadrane ye	Connections	Set & N		Data Too		anayss .	Outine	5 kt	dayla						
	M6 • G	& ANUM!															
-	4		c		D	6	F	6	н	1		к	1	M	N	0	
1.652	stion of water A	Ag, body weight to	gratures of beneficies	renunater L	erzere in water(rig/L)												
						11	1 d	At	Water ingestion(mg/kg*d)	Log-SF	54	RISK	LOG-RISK				
	1.252135991	45.87173658		-0.416993605	0.659025134	365	62050	25550	15.94601032				0.061843				
	1.238541319	45.36277237		1.049754593	2.854949917	365	62050	25550	68.39062035				0.209248				
	0.576253643	44.69740657		0.246209112	1.229162035	365	62050	25550	14.6184849				1.76936				
	1.438838427	51.71228554		0.397103287	1.487509562	365	65020	25550	36.68781161				1.10224				
	1.202860022	53.62677598 43.99897216		0.000122117	0.999677891 1.511712599	365	62050 62050	25550	19.88035404		0.009973			#NUM1 1.068252			
	1.4547896	43.99897216 21.05141222		0.41324318	1.511/12599	385	62050	25550	64.30(82552 122.8359407				0.67911				
	1.2299993235	43.48102689		0.106353371	0.899105873	365	62050	25550	23.46102935		0.026513			0.8620			
	2.298156106	34.42923754		-0.30323858	0.90191137	345	62050	25550	51.36542132				-0.74905				
	0.987321602	49.63577886		1.509348129	0.22105408	365	62050	25550	1.8576282		0.007682			0.252383			
	1.941425199	43.98540319		0.504572308	0.603763991	365	62050	25550	23.62233493		0.011514			0.251054			
	1.359605887	46.1326#937		1.597226186	4.914923487	365	62050	25550	128.4000115	4.59777	0.010074	1.256+00	0.257383	0.209248			
	1.145568223	37.99068873		1.044709377	0.351772296	365	62050	25550	9.402639551	4.06532	0.017161	1.616-01	1.82413	0.206428			
	1.601280547	22.45600643		0.618629429	1.856474909	365	62050	25550	114.3099579	-3.87316	0.029782	2.425100	0.8826	0.061841			
	0.871381901	50.40049178		0.097580441	0.911758214	365	62050	25550	13.97163877	5.30023	0.00499	6.976-02	2.6632	0.47474			
	0.981552677	48.55932855		-0.621222006	0.537287468	365	62050	25550	9.622009391	-4.01265	0.017995	1.735-01	-1.75307				
	1.14256689	53.75595493		-1.250878284	0.286253275	365	62050	25550	5.39323399		0.01084						
	1.606491952	56.23345419		0.51959367	1.681344329	365	62050	25550	42.57789654		0.012937						
	0.97967457	36.72940131		0.416/04221	1.548032424	365	62050	25550	37.10602971		0.016515			0.0014			
	1.41567769	49.20398232 37.50170159		0.648904626 0.120648002	1.913443744	365	62050 62050	25550	48.30951149				0.818129				
	2.184595758	37.20170359		0.120648002	1.128227709 2.23848948	365	62050	25550	58.88679919				0.206428				
	0.639205228	49.12298846		0.777778388	2.17663126	380	62050	25550	25.10638283				-1.30349				
	1.129522808	45.5433360		1.019023131	2.735487038	365	62050	25550	60,89665166				1.068752				
	1.90058343	44.60152448		0.844545246	0.429752245	365	62050	25550	16.23301367	4.98791		1.116-01					
	1.206248112	01.77950152		0.413630919	0.648125306	365	62050	25550	10.87021058	4.91983	0.0073	7.546-02	-2.5338	1.30396			
	0.752244506	60.251778		0.339958009	1.491762056	365	62050	25550	16.50944445	4.45384	0.011634	1.926-01	1.64991	1.33176			
	Finel (2) Final	Quart Quart	Sheet? Sheet?	A 11118002	0.914072166	200	63860	35550	11 311 30346	3 36 334	0.039.458	L LOC AL	a ca ta	1.25185			
	Time (2) / The	Sheep, Sheep	steel2 sheet)	(19) ⁻								-		0010.00			

And what am I going to do? I am going to try to sort it here let us say. So sort it, continue with current selection and sort log values from smallest to largest okay and so I am trying to look at this particular value here. So I copy pasted the values in this particular column and then I sorted from smallest to largest and now see that there are what we say 4 or 5 cells rather that came up with what we say non-numeric values.

Again, within 10,000 set of data and relevant permutation and combinations so that is not unexpected. So thus we could not obviously come up with the histogram. So I am going to not consider this data and ask the you know data analysis or excel to come up with the particular histogram here. So let us say here I am going to look at obviously column M here let us say right.

(Refer Slide Time: 27:48)

i de la comercia de l	Hom Ho	m Frem Of	her Existing Ratiosh	vaperies 1.	son i	Constant States	fed	to Remove		Considers 1	E Co	E 19	3.0 -1+	de Detail		alysis			
		External Data		fore	Set	& Filter		es sapelers	Data Took		a)11	0	ulee		Anti/1	6			
_	K2	• ()	fa -82*12																
4	F	6	н	1	1	K	L.	м	N	0	ρ	Q	R	5	T	U	V W	×	Y Z
																Hist	ogram		
												700						- 120.00%	
1	Ed	Å1	Water ingestion/mg/lg*d		SE	RISK	LOG RSK												
2	62050	25550	15 946010			1.0(£+00				Frequency i		600			1				
1	62050	25550	68.390624			1.236+00		INUM	-15.7981	1	0.01%	0.00			Ш.,		_	100.00%	
	62050 62050	25550 25550	14.61842 36.60281			1.70E-01	-1.10224	WHEN!	-15.6277 -15.4571	0	0.01%	500							
5	62050	25550	35.067811 19.880354			1.318:01			-15.4579	0	0.01%	,,,,,,			112			82.02%	
,	62050	25550	64 30(87)			5.07E 01	-0.62911	1.068752	-15,1166		0.01%	G 400			Į.				
	62050	25530	122.83504			1.978+00		0.8426	-14.9462	0	0.01%	8.00						61.07%	
,	62050	25550	23.46192	35 3.63012	0.026513	6.22E-01	0.47474	0.818129	14,7759	0	0.01%	300			,			61.07%	
0	62050	25550	53.36542	32 -4.72621	0.00816	4.738-01	-0.74905	0.676054	-14.6055	0	0.01%	£ 300							Fusionsy
1	62050	25550	3.8976	82 4.86885	0.007682	2.59E-02	3.50851	0.257383	14,4351	0	0.01%				1			42.02%	
2	62050	25550	23.622330			5.726-01			-14.2647	0	0.01%	200			<i>•</i>				Cumulative %
3	62050	25550	128.4000			1.25€+00			-14.0944	1	0.02%							20.02%	
14	62050	25550 25550	9.4026392 116.30992		0.037163	1.61E-01	-1.82413	0.206428	-13.924	0	0.02%	100		11					
16	62050	25550	13 97163		0.000782		2.6632	-0.47424	13 580	1	0.03%								
7	62050	25550	9.623009			1.735-01	-1.75307		-12.4129	ó	0.03%	0	0 4 2 5	2-8-8	355	888	1840000	0.00%	
18	62050	25550	5.39323	99 4.52452	0.01084	5.85E-02	2.89137	0.59537	13.2425	- 1	0.05%		10062	198	100	1987.64	3898524 2038524 2037302 2017352 2017300 2017300 2017300 2017300 2017300		
9	62050	25550	42.57789	54 -4.34266	0.012937	5.51E-01	-0.59632	-0.59739	-13.0721	1	0.06%		7980627 81222318 848286180 094386180	190612	CF000000000000000000000000000000000000		4,725896521 8,8720362219 8,8720362219 1,812031,7524 1,8126457305 0,46457305 0,46457305		
90	62050	25550	37.106028	21 4.1021	0.016535	6.148-01	-0.48852	0.0014	-12.9018	3	0.09%		2222		0.9.9		1997		
1	62050	25550	48.305511			5.53E+00		0.67911	12,7314	2	0.11%					lin .			
2	62050	25550	58,81679			1.238+00		-0.74905	-12.561		0.16%								
-3	62050 62050	25550 25550	51.9169			3.59E-01 2.71E-01		-0.85525 -0.93497	-12.3906	4	0.20%								
5	62050	25550	60,296455			2.918+00			12.0495	18	0.53%								
16	62050	25550	16 23301				-2.20087	-1.30198	-11.8795	37	0.90%								
2	62050	25530	10.870210	58 -4.91983		7.546-02	-2.5318	-1.30396	11.7092	49	1.19%								
18	62050	25550	16.509444			1.92E-01	1.64993	-1.33176	11.5388	65	2.04%								
	 Final (2) Find	Shretti Shretti Shretti	Sheet]	0,039,814	COS 03	a table	1.35185	11.2644	03	1.64.8	1							
22.01														-	-			00.000	ach (=) 0

And I am going to say it is going to be M here right and I need to start from cell number 7 right, so cell number 7 here, so this probably needs to be a capital M okay. So and M2 seems fine, so let us look at what data we have out here and now you see now that this particular graph is remarkably smooth or you know if not remarkably pretty smooth and again what do we have here.

Excel came up with its own bin size out here and column N and in O the frequency let us say and then again the probability here, I guess this is the cumulative but again you can calculate the probability obviously based on this frequency by 10,000 or this 9995 I guess right. Again, how did we mention that we can get the probability as in the number of events by that particular bin size let us say.

And how do we get the probability distribution function let us say, that particular probability by the bin size I guess right. I guess I messed it up there. So how do I get the probability? The number of events in that bin/the total number of events, so in that case it would be let us say for this particular bin it will be 1/9995 because I took 10,000-995 right. So in that case, again I can come up with relevant probability and the probability distribution function.

So having plotted that I see that this particular logarithm of the risk let us say has a normal distribution. As in, what do I understand from that, as in the risk has a log normal or follows a log normal distribution right. So again this is what we have here, so earlier if you looked at the previous graph though we see that you know we could not make much sense out of it. Why is that, because it was log normally distributed right say right?

And that is why it was skewed to the left, it as in just the risk was skewed to the left but when I took the logarithm of these values, the natural logarithm I see that now it follows a normal distribution and again here we have we can understand the data in a better manner. Obviously, though we are yet to calculate what is it now the probability that the risk will exceed 10 power -6, so how do I do that?

I can sort them out as in I did sort them out here let us say or I can sort out the risk here let us say right and look at those values that would exceed 10 power -6 and obviously calculate the probability which we are going to do or I can look at or calculate the natural logarithm of 10 power -6 plotted out here let us say wherever that is and look at that cumulative risk and see you know what are the chances of this probability exceeding 10 power -6 I guess right or 10 power -6 risk let us see.

Because it is going to be the area obviously right, so again we are going to you know move on to this or you know discuss this in great detail again in the next session but for today what have we done, we looked at stochastic approach, Monte Carlo simulation, as in we considered random number generation let us say for different variables depending on their type of distribution.

Then, calculated the risk for each of those particular sets of data we came up with and then we saw that the risk was actually log normally distributed and that is what we have here and we are still obviously yet to calculate the what we say actual aspect we are supposed to, what is that now, the case that or probability that the risk would be >10 power -6 let us say right. So again, we can look at the area under this particular graph or obviously count the number of cases where the risk exceeded 10 power -6.

So we are going to look at both those factors or aspects in the next session I guess right and I guess with that I am going to be done for today and thank you.